Showing 20 articles starting at article 941

< Previous 20 articles        Next 20 articles >

Categories: Chemistry: Biochemistry, Geoscience: Landslides

Return to the site home page

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: Optics
Published

Peering into nanofluidic mysteries one photon at a time      (via sciencedaily.com)     Original source 

Researchers have revealed an innovative approach to track individual molecule dynamics within nanofluidic structures, illuminating their response to molecules in ways never before possible.

Chemistry: Biochemistry Computer Science: Artificial Intelligence (AI) Engineering: Robotics Research
Published

An 'introspective' AI finds diversity improves performance      (via sciencedaily.com)     Original source 

An artificial intelligence with the ability to look inward and fine tune its own neural network performs better when it chooses diversity over lack of diversity, a new study finds. The resulting diverse neural networks were particularly effective at solving complex tasks.

Environmental: Ecosystems Geoscience: Landslides
Published

Climate protection: Land use changes cause the carbon sink to decline      (via sciencedaily.com)     Original source 

Terrestrial carbon sinks can mitigate the greenhouse effect. Researchers pooled various data sources and found that European carbon storage takes place mainly in surface biomass in East Europe. However, changes of land use in particular have caused this carbon sink to decline.

Geoscience: Environmental Issues Geoscience: Landslides
Published

Nitrogen runoff strategies complicated by climate change      (via sciencedaily.com)     Original source 

As climate change progresses, rising temperatures may impact nitrogen runoff from land to lakes and streams more than projected increases in total and extreme precipitation for most of the continental United States, according to new research from a team of climate scientists.

Geoscience: Landslides
Published

Saltwater or freshwater? Difference is large for the climate when we flood low lying areas      (via sciencedaily.com)     Original source 

Researchers find large methane emissions: 'Do not flood low-lying areas with freshwater'. Their studies find that freshwater lakes emit much more methane than saltwater lagoons, bogs and wet meadows.

Environmental: Wildfires Geoscience: Environmental Issues Geoscience: Landslides
Published

What causes mudslides and floods after wildfires? Hint: It's not what scientists thought      (via sciencedaily.com)     Original source 

Scientists once assumed that flooding and mudslides after wildfires were linked to the waxy coating that builds up on charred soil, preventing water absorption. Researchers found that water flow came from absorbed water in both burnt and unburnt areas, suggesting that water was, in fact, being absorbed into burnt ground. The discovery provides valuable insights into where and when potential flooding and mudslides may occur and how landscapes recover after a wildfire.

Ecology: General Geoscience: Environmental Issues Geoscience: Landslides
Published

Salinity changes threatening marine ecosystems      (via sciencedaily.com)     Original source 

A groundbreaking study reveals the critical yet severely understudied factor of salinity changes in ocean and coastlines caused by climate change.

Geoscience: Earthquakes Geoscience: Landslides Mathematics: Statistics
Published

Geologists are using artificial intelligence to predict landslides      (via sciencedaily.com)     Original source 

Many factors influence where a landslide will occur, including the shape of the terrain, its slope and drainage areas, the material properties of soil and bedrock, and environmental conditions like climate, rainfall, hydrology and ground motion resulting from earthquakes. Geologists have developed a new technique that uses artificial intelligence to better predict where and why landslides may occur could bolster efforts to protect lives and property in some of the world's most disaster-prone areas. The new method improves the accuracy and interpretability of AI-based machine-learning techniques, requires far less computing power and is more broadly applicable than traditional predictive models.

Chemistry: Biochemistry Offbeat: General
Published

Bigger bottles keep champagne bubbly for decades      (via sciencedaily.com)     Original source 

Tiny bubbles bursting in a drinker's face and the bite of carbonation are all part of the experience when sipping champagne and sparkling wines. But how long can these drinks be stored in sealed bottles before they go flat? According to researchers, the answer depends on the container's size. They estimate a 40-year shelf-life for 750-milliliter (25-ounce) bottles, and 82 and 132 years for 1.5-liter (50-ounce) and 3-liter (101-ounce) bottles, respectively.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Technology Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry Physics: General
Published

Don't wait, desalinate: A new approach to water purification      (via sciencedaily.com)     Original source 

A water purification system separates out salt and other unnecessary particles with an electrified version of dialysis. Successfully applied to wastewater with planned expansion into rivers and seas, the method saves money and saps 90% less energy than its counterparts.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Space: Astrophysics Space: Exploration Space: General Space: Structures and Features
Published

First detection of crucial carbon molecule      (via sciencedaily.com)     Original source 

Scientists detect a new carbon compound in space for the first time. Known as methyl cation (pronounced cat-eye-on) (CH3+), the molecule is important because it aids the formation of more complex carbon-based molecules. Methyl cation was detected in a young star system, with a protoplanetary disk, known as d203-506, which is located about 1,350 light-years away in the Orion Nebula.

Chemistry: Biochemistry Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

'Toggle switch' can help quantum computers cut through the noise      (via sciencedaily.com)     Original source 

What good is a powerful computer if you can't read its output? Or readily reprogram it to do different jobs? People who design quantum computers face these challenges, and a new device may make them easier to solve.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Energy: Batteries Energy: Technology
Published

Towards efficient lithium--air batteries with solution plasma-based synthesis of perovskite hydroxide catalysts      (via sciencedaily.com)     Original source 

CoSn(OH)6 (CSO) is an effective oxygen evolution reaction (OER) catalyst, necessary for developing next-generation lithium -- air batteries. However, current methods of synthesizing CSO are complicated and slow. Recently, an international research team synthesized CSO in a single step within 20 minutes using solution plasma to generate CSO nanocrystals with excellent OER catalytic properties. Their findings could boost the manufacturing of high energy density batteries.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

Making the most of minuscule metal mandalas      (via sciencedaily.com)     Original source 

To unveil the previously elusive behavior and stability of complex metal compounds found in aqueous solutions called 'POMs', researchers have created a speciation atlas. This achievement has the potential to drive new discoveries and advancements in fields like catalysis, medicine, and beyond.

Chemistry: Biochemistry Energy: Alternative Fuels Energy: Technology Environmental: General Geoscience: Environmental Issues
Published

Perovskite solar cells set new record for power conversion efficiency      (via sciencedaily.com)     Original source 

Perovskite solar cells have attained now attained the extremely high efficiency rate of 24.35% with an active area of 1 cm2. This ground-breaking achievement in maximizing power generation from next-generation renewable energy sources will be crucial to securing the world's energy future.

Biology: Biochemistry Chemistry: Biochemistry Chemistry: General Environmental: Ecosystems Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Rain gardens could save salmon from toxic tire chemicals      (via sciencedaily.com)     Original source 

Specially designed gardens could reduce the amount of a toxic chemical associated with tires entering our waterways by more than 90 per cent, new research shows.

Chemistry: Biochemistry Chemistry: Thermodynamics Energy: Technology Environmental: General Geoscience: Environmental Issues
Published

Inside-out heating and ambient wind could make direct air capture cheaper and more efficient      (via sciencedaily.com)     Original source 

Chemical engineers use coated carbon fibers and eliminate steam-based heating in their simpler design, which also can be powered by wind energy.

Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry
Published

Biodegradable gel shows promise for cartilage regeneration      (via sciencedaily.com)     Original source 

A gel that combines both stiffness and toughness is a step forward in the bid to create biodegradable implants for joint injuries, according to new research. Mimicking articular cartilage, found in our knee and hip joints, is challenging. This cartilage is key to smooth joint movement, and damage to it can cause pain, reduce function, and lead to arthritis. One potential solution is to implant artificial scaffolds made of proteins that help the cartilage regenerate itself as the scaffold biodegrades. How well the cartilage regenerates is linked to how well a scaffold can mimic the biological properties of cartilage, and to date, researchers have struggled to combine the seemingly incompatible properties of stiffness and toughness. Now, new research outlines a method to marry these properties in a biodegradable gel.

Chemistry: Biochemistry Chemistry: Organic Chemistry Environmental: General Geoscience: Environmental Issues
Published

The art and science of living-like architecture      (via sciencedaily.com)     Original source 

Collaborators have created 'living-like' bioactive interior architecture designed to one day protect us from hidden airborne threats. This publication establishes that the lab's biomaterial manufacturing process is compatible with the leading-edge cell-free engineering that gives the bioactive sites their life-like properties.