Showing 20 articles starting at article 941
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Biochemistry, Geoscience: Oceanography
Published Innovative design achieves tenfold better resolution for functional MRI brain imaging



Hospital MRI scanners, using 3 Tesla magnets, provide poor spatial resolution in brain imaging. More recent 7T MRIs are better but used mainly in the rare research lab. Scientists have now supercharged the standard 7T scanner to improve the resolution by nearly a factor of 10 -- a 50-times improvement over standard 3T MRIs. The NexGen 7T can track signals through the brain and perhaps tie functional changes to brain maladies.
Published Pioneering research method reveals bluefin tuna's fate



The Mediterranean spawning grounds of Bluefin tuna -- the largest tuna and one of the most powerful fish in the sea -- are under threat, due to rising sea temperatures. A pioneering research method to decode bluefin 'otoliths' (a stony tissue found in their ear) has determined the threshold sea temperature at which bluefin thrive to be 28 degrees Celsius.
Published Separating out signals recorded at the seafloor



Research shows that variations in pyrite sulfur isotopes may not represent the global processes that have made them such popular targets of analysis and interpretation. A new microanalysis approach helps to separate out signals that reveal the relative influence of microbes and that of local climate.
Published How shipwrecks are providing a refuge for marine life



New research has highlighted how the estimated 50,000 wrecks around the UK coastline are protecting the seabed, and the species inhabiting it, in areas still open to bottom-towed fishing.
Published 'Strange metal' is strangely quiet in noise experiment



Experiments have provided the first direct evidence that electricity seems to flow through 'strange metals' in an unusual liquid-like form.
Published Revolutionary breakthrough in the manufacture of photovoltaic cells



Engineers have achieved a world first by manufacturing the first back-contact micrometric photovoltaic cells.
Published Chemists use oxygen, copper 'scissors' to make cheaper drug treatments possible



Researchers have devised a way to produce chemicals used in medicine and agriculture for a fraction of the usual cost. Using oxygen as a reagent and copper as a catalyst to break organic molecules' carbon-carbon bonds and convert them into amines, which are widely used in pharmaceuticals. Traditional metal catalysis uses expensive metals such as platinum, silver, gold and palladium, but the researchers used oxygen and copper -- an abundant base metal.
Published Hybrid transistors set stage for integration of biology and microelectronics



Researchers create transistors combining silicon with biological silk, using common microprocessor manufacturing methods. The silk protein can be easily modified with other chemical and biological molecules to change its properties, leading to circuits that respond to biology and the environment.
Published AI for perovskite solar cells: Key to better manufacturing



Tandem solar cells based on perovskite semiconductors convert sunlight to electricity more efficiently than conventional silicon solar cells. In order to make this technology ready for the market, further improvements with regard to stability and manufacturing processes are required. Researchers have succeeded in finding a way to predict the quality of the perovskite layers and consequently that of the resulting solar cells: Assisted by Machine Learning and new methods in Artificial Intelligence (AI), it is possible assess their quality from variations in light emission already in the manufacturing process.
Published Tiny beads preserve enzymes for biocatalysis



Some enzymes, such as the one derived from fungi and investigated in this study, are able to produce valuable substances such as the fragrance (R)-1-phenylethanol. To this end, they convert a less expensive substrate using a co-substrate. A research team came up with the idea of supplying them with this co-substrate using a plasma -- a somewhat crazy idea, as plasmas generally have a destructive effect on biomolecules. However, by employing several tricks, the researchers did indeed succeed. They have now refined one of these tricks and thus improved the process: They attach the enzymes to tiny beads in order to hold them in place at the bottom of the reactor, where they are protected from the damaging effects of the plasma.
Published New method for determining the water content of water-soluble compounds



Researchers have developed a new method for the accurate determination of the water content of water-soluble compounds. This plays a significant role in various areas, including determining drug dosages.
Published Deep-sea mining and warming trigger stress in a midwater jellies



The deep sea is home to one of the largest animal communities on earth which is increasingly exposed to environmental pressures. However, our knowledge of its inhabitants and their response to human-induced stressors is still limited. A new study now provides first insights into the stress response of a pelagic deep-sea jellyfish to ocean warming and sediment plumes caused by deep-sea mining.
Published Protect delicate polar ecosystems by mapping biodiversity



Concerted action is required to mitigate the impact of warming on polar ecosystems and sustainably manage these unique habitats.
Published Gold now has a golden future in revolutionizing wearable devices



Scientists have pioneered a novel approach to develop intelligent healthcare sensors using various gold nanowires.
Published Research reveals rare metal could offer revolutionary switch for future quantum devices



Quantum scientists have discovered a rare phenomenon that could hold the key to creating a 'perfect switch' in quantum devices which flips between being an insulator and superconductor.
Published New computer code for mechanics of tissues and cells in three dimensions



Biological materials are made of individual components, including tiny motors that convert fuel into motion. This creates patterns of movement, and the material shapes itself with coherent flows by constant consumption of energy. Such continuously driven materials are called 'active matter'. The mechanics of cells and tissues can be described by active matter theory, a scientific framework to understand shape, flows, and form of living materials. The active matter theory consists of many challenging mathematical equations. Scientists have now developed an algorithm, implemented in an open-source supercomputer code, that can for the first time solve the equations of active matter theory in realistic scenarios. These solutions bring us a big step closer to solving the century-old riddle of how cells and tissues attain their shape and to designing artificial biological machines.
Published Infection-resistant, 3D-printed metals developed for implants



A novel surgical implant was able to kill 87% of the bacteria that cause staph infections in laboratory tests, while remaining strong and compatible with surrounding tissue like current implants. The work could someday lead to better infection control in many common surgeries, such as hip and knee replacements, that are performed daily around the world. Bacterial colonization of the implants is one of the leading causes of their failure and bad outcomes after surgery. Using 3D-printing technology, the researchers added 10% tantalum, a corrosion-resistant metal, and 3% copper to the titanium alloy typically used in implants. When bacteria come into contact with the material's copper surface, almost all of their cell walls rupture. Meanwhile, the tantalum encourages healthy cell growth with surrounding bone and tissue leading to expedited healing for the patient.
Published Breakthrough in tackling increasing demand by 'internet of things' on mobile networks



A novel technology to manage demands on mobile networks from multiple users using Terahertz frequencies has been developed by computer scientists.
Published Deep dive on sea level rise: New modelling gives better predictions on Antarctic ice sheet melt



Using historical records from around Australia, an international team of researchers have put forward the most accurate prediction to date of past Antarctic ice sheet melt, providing a more realistic forecast of future sea level rise. The Antarctic ice sheet is the largest block of ice on earth, containing over 30 million cubic kilometers of water. Hence, its melting could have a devasting impact on future sea levels. To find out just how big that impact might be, the research team turned to the past.
Published Putting an end to plastic separation anxiety



Bio-based plastics often end up in recycling streams because they look and feel like conventional plastic, but the contamination of these compostable products makes it much harder to generate functional material out of recycled plastic. Scientists have now developed a biology-driven process to convert these mixtures into a new biodegradable material that can be used to make fresh products. The scientists believe the process could also enable a new field of biomanufacturing wherein valuable chemicals and even medicines are made from microbes feeding off of plastic waste.