Showing 20 articles starting at article 1041
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Organic Chemistry, Space: General
Published Scientists detect seismic waves traveling through Martian core



New NASA InSight research reveals that Mars has a liquid core rich in sulfur and oxygen, leading to new clues about how terrestrial planets form, evolve and potentially sustain life.
Published Pioneering research sheds new light on the origins and composition of planet Mars



A new study has uncovered intriguing insights into the liquid core at the centre of Mars, furthering understanding of the planet's formation and evolution.
Published Outstanding performance of organic solar cell using tin oxide



Organic solar cells have a photoactive layer that is made from polymers and small molecules. The cells are very thin, can be flexible, and are easy to make. However, the efficiency of these cells is still much below that of conventional silicon-based ones. Applied physicists have now fabricated an organic solar cell with an efficiency of over 17 percent, which is in the top range for this type of material. It has the advantage of using an unusual device structure that is produced using a scalable technique.
Published Researchers team up with national lab for innovative look at copper reactions



Researchers are working to get a better look at how peroxides on the surface of copper oxide promote the oxidation of hydrogen but inhibit the oxidation of carbon monoxide, allowing them to steer oxidation reactions.
Published Researchers use AI to discover new planet outside solar system



A research team has confirmed evidence of a previously unknown planet outside of our solar system, and they used machine learning tools to detect it. A recent study by the team showed that machine learning can correctly determine if an exoplanet is present by looking in protoplanetary disks, the gas around newly formed stars. The newly published findings represent a first step toward using machine learning to identify previously overlooked exoplanets.
Published Cryo-imaging lifts the lid on fuel cell catalyst layers



Thanks to a novel combination of cryogenic transmission electron tomography and deep learning, EPFL researchers have provided a first look at the nanostructure of platinum catalyst layers, revealing how they could be optimized for fuel cell efficiency.
Published Making better measurements of the composition of galaxies



A study using data from telescopes on Earth and in the sky resolves a problem plaguing astronomers working in the infrared and could help make better observations of the composition of the universe with the James Webb Space Telescope and other instruments.
Published Greener batteries



Our modern rechargeable batteries, such as lithium-ion batteries, are anything but sustainable. One alternative is organic batteries with redox-organic electrode materials (OEMs), which can be synthesized from natural 'green' materials. A team has now introduced a new OEM for aqueous organic high-capacity batteries that can be easily and cheaply recycled.
Published Reinforcement learning: From board games to protein design



An AI strategy proven adept at board games like Chess and Go, reinforcement learning, has now been adapted for a powerful protein design program. The results show that reinforcement learning can do more than master board games. When trained to solve long-standing puzzles in protein science, the software excelled at creating useful molecules. In one experiment, proteins made with the new approach were found to be more effective at generating useful antibodies in mice than were previous methods. If this method is applied to the right research problems, it likely could accelerate progress in a variety of scientific fields.
Published AI system can generate novel proteins that meet structural design targets



A new machine-learning system can generate protein designs with certain structural features, and which do not exist in nature. These proteins could be utilized to make materials that have similar mechanical properties to existing materials, like polymers, but which would have a much smaller carbon footprint.
Published New findings pave the way for stable organic solar cells that may enable cheap and renewable electricity generation



Organic solar cells show great promise for clean energy applications. However, photovoltaic modules made from organic semiconductors do not maintain their efficiency for long enough under sunlight for real world applications. Scientists have now revealed an important reason why organic solar cells rapidly degrade under operation. This new insight will drive the design of more stale materials for organic semiconductor-based photovoltaics, thus enabling cheap and renewable electricity generation.
Published Novel nanocages for delivery of small interfering RNAs



Small interfering RNAs (siRNAs) are novel therapeutics that can be used to treat a wide range of diseases. This has led to a growing demand for selective, efficient, and safe ways of delivering siRNA in cells. Now, in a cooperation between the Universities of Amsterdam and Leiden, researchers have developed dedicated molecular nanocages for siRNA delivery. In a paper just out in the Journal Chem they present nanocages that are easy to prepare and display tuneable siRNA delivery characteristics.
Published Could this copycat black hole be a new type of star?



It looks like a black hole and bends light like a black hole, but it could actually be a new type of star. Though the mysterious object is a hypothetical mathematical construction, new simulations by Johns Hopkins researchers suggest there could be other celestial bodies in space hiding from even the best telescopes on Earth.
Published Using machine learning to find reliable and low-cost solar cells



Hybrid perovskites are organic-inorganic molecules that have received a lot of attention over the past 10 years for their potential use in renewable energy. Some are comparable in efficiency to silicon for making solar cells, but they are cheaper to make and lighter, potentially allowing a wide range of applications, including light-emitting devices. However, they tend to degrade way more readily than silicon when exposed to moisture, oxygen, light, heat, and voltage. Researchers used machine learning and high-throughput experiments to identify perovskites with optimal qualities out of the very large field of possible structures.
Published Metal-poor stars are more life-friendly



A star's chemical composition strongly influences the ultraviolet radiation it emits into space and thus the conditions for the emergence of life in its neighborhood.
Published A solar hydrogen system that co-generates heat and oxygen



Researchers have built a pilot-scale solar reactor that produces usable heat and oxygen, in addition to generating hydrogen with unprecedented efficiency for its size.
Published Playing hide and seek with planets



An international team of astronomers announced the first exoplanet discovered through a combined approach of direct imaging and precision measurements of a star's motion on the sky. This new method promises to improve the efficiency of exoplanet searches, paving the way for the discovery of an Earth twin.
Published New exoplanet discovered



Astronomers report the first exoplanet jointly discovered through direct imaging and precision astrometry, a new indirect method that identifies a planet by measuring the position of the star it orbits. Data from the Subaru Telescope in Hawai`i and space telescopes from the European Space Agency (ESA) were integral to the team's discovery.
Published A sharper look at the M87 black hole



The iconic image of the supermassive black hole at the center of M87 has gotten its first official makeover based on a new machine learning technique called PRIMO. The team used the data achieved the full resolution of the array.
Published M87 in 3D: New view of galaxy helps pin down mass of the black hole at its core



From Earth, giant elliptical galaxies resemble highly symmetric blobs, but what's their real 3D structure? Astronomers have assembled one of the first 3D views of a giant elliptical galaxy, M87, whose central supermassive black hole has already been imaged by the Event Horizon Telescope. M87 turns out to be triaxial, like a potato. The revised view provides a more precise measure of the mass of the central black hole: 5.37 billion solar masses.