Showing 20 articles starting at article 1181
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Organic Chemistry, Space: General
Published A mysterious object is being dragged into the supermassive black hole at the Milky Way's center


An object near the supermassive black hole at the center of the Milky Way galaxy has drawn the interest of scientists because it has evolved dramatically in a relatively short time. A new study suggests that the object, called X7, could be a cloud of dust and gas that was created when two stars collided. The researchers believe it will eventually be drawn toward the black hole and will disintegrate.
Published New discovery sheds light on very early supermassive black holes


Astronomers have discovered a rapidly growing black hole in one of the most extreme galaxies known in the very early Universe. The discovery of the galaxy and the black hole at its center provides new clues on the formation of the very first supermassive black holes.
Published Unusual atom helps in search for Universe's building blocks


An unusual form of caesium atom is helping a research team unmask unknown particles that make up the Universe.
Published Research captures and separates important toxic air pollutant


A series of new stable, porous materials that capture and separate benzene have been developed.
Published Making engineered cells dance to ultrasound


A team has developed a method for selectively manipulating genetically engineered cells with ultrasound.
Published Discovery of massive early galaxies defies prior understanding of the universe


Six massive galaxies discovered in the early universe are upending what scientists previously understood about the origins of galaxies in the universe.
Published How one of Saturn's moons ejects particles from oceans beneath its surface


Enceladus, the sixth largest of Saturn's moons, is known for spraying out tiny icy silica particles -- so many of them that the particles are a key component of the second outermost ring around Saturn. Scientists have not known how that happens or how long the process takes. A study now shows that tidal heating in Enceladus' core creates currents that transport the silica, which is likely released by deep-sea hydrothermal vents, over the course of just a few months.
Published Electrodes grown in the brain -- paving the way for future therapies for neurological disorders


The boundaries between biology and technology are becoming blurred. Researchers have now successfully grown electrodes in living tissue using the body's molecules as triggers. The result paves the way for the formation of fully integrated electronic circuits in living organisms.
Published Novel air filter captures wide variety of pollutants



An air filter made out of corn protein instead of petroleum products can concurrently capture small particulates as well as toxic chemicals like formaldehyde that current air filters can't. The research could lead to better air purifiers, particularly in regions of the world that suffer from very poor air quality. The more environmentally friendly air filter was able to simultaneously capture 99.5% of small particulate matter, similar to commercial HEPA filters, and 87% of formaldehyde, which is higher than specially designed air filters for those types of toxics.
Published Theory can sort order from chaos in complex quantum systems


Theoretical chemists have developed a theory that can predict the threshold at which quantum dynamics switches from 'orderly' to 'random,' as shown through research using large-scale computations on photosynthesis models.
Published Why do Earth's hemispheres look equally bright when viewed from space?


When seen from space, Earth's hemispheres -- northern and southern -- appear equally bright. For years, the brightness symmetry between hemispheres remained a mystery. In a new study, researchers reveal a strong correlation between storm intensity, cloudiness and the solar energy reflection rate in each hemisphere. They offer a solution to the mystery, alongside an assessment of how climate change might alter the reflection rate in the future.
Published A human interactome to prioritize drug discovery


Researchers create a network of interacting proteins -- or interactome -- to aid drug discovery.
Published A molecular machine's secret weapon exposed


RNAs can wreak havoc on cells if they aren't removed at the right time. Dis3L2 is a molecular 'machine' that untangles and chews up RNAs, but scientists have been unable to explain how. Biochemists have now pieced together the answer. By shape-shifting, the machine unsheathes a lethal wedge that pries open and chews up RNA molecules, a behavior previously unseen.
Published 'Electronic nose' built with sustainably sourced microbial nanowires that could revolutionize health monitoring


Scientists recently announced the invention of a nanowire 10,000 times thinner than a human hair that can be cheaply grown by common bacteria and tuned to 'smell' a vast array of chemical tracers -- including those given off by people afflicted with a wide range of medical conditions, such as asthma and kidney disease. Thousands of these specially tuned wires, each sniffing out a different chemical, can be layered onto tiny, wearable sensors, allowing healthcare providers an unprecedented tool for monitoring potential health complications. Since these wires are grown by bacteria, they are organic, biodegradable and far greener than any inorganic nanowire.
Published 'Forbidden' planet orbiting small star challenges gas giant formation theories


Astronomers have discovered an unusual planetary system in which a large gas giant planet orbits a small red dwarf star called TOI-5205. Their findings challenge long-held ideas about planet formation.
Published Artificial intelligence conjures proteins that speed up chemical reactions


Scientists have used machine learning to create brand-new enzymes, which are proteins that accelerate chemical reactions. This is an important step in the field of protein design as new enzymes could have many uses across medicine and industrial manufacturing. The research team devised deep-learning, artificial intelligence algorithms that created light-emitting enzymes called luciferases. Laboratory testing confirmed that the new enzymes can recognize specific chemicals and emit light very efficiently.
Published Meteorite crater discovered in French winery


Countless meteorites have struck Earth in the past and shaped the history of our planet. It is assumed, for example, that meteorites brought with them a large part of its water. The extinction of the dinosaurs might also have been triggered by the impact of a very large meteorite. It turns out that the marketing 'gag' of the 'Domaine du Météore' winery is acutally a real impact crater. Meteorite craters which are still visible today are rare because most traces of the celestial bodies have long since disappeared again.
Published Nanofluidic devices offer solutions for studying single molecule chemical reactions


Researchers have developed principles and technologies of nanofluidic devices to freely manipulate nanomaterials, biomaterials, and molecules at the single-molecule level using fundamental technologies such as nanofluidic processing, functional integration, and fluidic control and measurement, which has pioneered the way to integrate various fields under nanofluidics. To elucidate the single molecule dynamics of chemical reactions in solution, using their unique nanofluidic devices, they outlined how they propose to solve problems such as precisely manipulating small molecules in solution and how to investigate extremely quick reactions, that only take nano- to picoseconds.
Published James Webb spots super old, massive galaxies that shouldn't exist


A team of international researchers have identified six candidate galaxies that existed roughly 500 to 700 million years after the Big Bang and are about as big as the modern Milky Way Galaxy -- a feat that scientists didn't think was possible.
Published Researchers uncover how photosynthetic organisms regulate and synthesize ATP


The redox regulation mechanism responsible for efficient production of ATP under varying light conditions in photosynthetic organisms has now been unveiled. Researchers investigated the enzyme responsible for this mechanism and uncovered how the amino acid sequences present in the enzyme regulate ATP production. Their findings provide valuable insights into the process of photosynthesis and the ability to adapt to changing metabolic conditions.