Showing 20 articles starting at article 41
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Inorganic Chemistry, Space: Structures and Features
Published Finding pearls in the mud: Eco-friendly tungsten recovery from semiconductor waste



Semiconductor industry waste is typically seen as a costly disposal problem and an environmental hazard. But what if this waste could be transformed into a valuable resource? In an exciting development, researchers have unveiled an eco-friendly method to extract rare metals from semiconductor waste. This innovative approach not only recovers precious tungsten but also assesses its economic viability, offering a sustainable solution for waste management in the tech industry.
Published Chemists develop new sustainable reaction for creating unique molecular building blocks



Polymers can be thought of like trains: Just as a train is composed of multiple cars, polymers are made up of multiple monomers, and the couplings between the train cars are similar to the chemical bonds that link monomers together. While polymers have myriad applications -- from drug delivery to construction materials -- their structures and functions are restricted by the chemically similar monomer building blocks they're composed of. Now, chemists have developed a new reaction to create unique monomers in a controlled way. This reaction, which uses nickel as a catalyst, ultimately enables scientists to create polymers with unique and modifiable properties for drug delivery, energy storage, microelectronics and more.
Published Breakthrough in molecular control: New bioinspired double helix with switchable chirality



The control of artificial double-helical structures, which are essential for the development of high-order molecular systems, remains difficult. In a new study, researchers have developed novel double-helical monometallofoldamers that exhibit controllable helicity inversion and chiral information transfer, in response to external stimuli. These monometallofoldamers can lead to novel artificial supramolecular systems for molecular information transmission, amplification, replication, and other exciting applications in various fields of technology.
Published Forever chemical pollution can now be tracked



Researchers developed a way to fingerprint organofluorine compounds -- sometimes called 'forever chemicals' --which could help authorities trace them to their source when they end up in aquifers, waterways or soil.
Published Advanced chelators offer efficient and eco-friendly rare earth element recovery



The world is going to need a lot of weird metals in the coming years, according to chemistry professor. But he isn't talking about lithium, cobalt or even beryllium. He's interested in dysprosium, which is so hidden in the periodic table that you'd be forgiven for thinking he made it up.
Published Concept for efficiency-enhanced noble-metal catalysts



The production of more than 90 percent of all chemical products we use in our everyday lives relies on catalysts. Catalysts speed up chemical reactions, can reduce the energy required for these processes, and in some cases, reactions would not be possible at all without catalysts. Researchers developed a concept that increases the stability of noble-metal catalysts and requires less noble metal for their production.
Published Astronomers uncover risks to planets that could host life



A groundbreaking study has revealed that red dwarf stars can produce stellar flares that carry far-ultraviolet (far-UV) radiation levels much higher than previously believed.
Published Cold antimatter for quantum state-resolved precision measurements



Why does the universe contain matter and (virtually) no antimatter? Scientists have achieved an experimental breakthrough in this context. It can contribute to measuring the mass and magnetic moment of antiprotons more precisely than ever before -- and thus identify possible matter-antimatter asymmetries. They have developed a trap, which can cool individual antiprotons much more rapidly than in the past.
Published Solving the doping problem: Enhancing performance in organic semiconductors



Physicists have discovered two new ways to improve organic semiconductors. They found a way to remove more electrons from the material than previously possible and used unexpected properties in an environment known as the non-equilibrium state, boosting its performance for use in electronic devices.
Published Sustainable catalysts: Crystal phase-controlled cobalt nanoparticles for hydrogenation



Controlling the crystal phase of cobalt nanoparticles leads to exceptional catalytic performance in hydrogenation processes, scientists report. Produced via an innovative hydrosilane-assisted synthesis method, these phase-controlled reusable nanoparticles enable the selective hydrogenation of various compounds under mild conditions without the use of harmful gases like ammonia. These efforts could lead to more sustainable and efficient catalytic processes across many industrial fields.
Published Key to rapid planet formation



Researchers have developed a new model to explain the formation of giant planets such as Jupiter, which furnishes deeper insights into the processes of planet formation and could expand our understanding of planetary systems.
Published The next generation of RNA chips



An international research team has succeeded in developing a new version of RNA building blocks with higher chemical reactivity and photosensitivity. This can significantly reduce the production time of RNA chips used in biotechnological and medical research. The chemical synthesis of these chips is now twice as fast and seven times more efficient.
Published The rotation of a nearby star stuns astronomers



Astronomers have found that the rotational profile of a nearby star, V889 Herculis, differs considerably from that of the Sun. The observation provides insights into the fundamental stellar astrophysics and helps us understand the activity of the Sun, its spot structures and eruptions.
Published More electricity from the sun



A coating of solar cells with special organic molecules could pave the way for a new generation of solar panels. This coating can increase the efficiency of monolithic tandem cells made of silicon and perovskite while lowering their cost -- because they are produced from industrial, microstructured, standard silicon wafers.
Published Researchers identify unique phenomenon in Kagome metal



A new study focuses on how a particular Kagome metal interacts with light to generate what are known as plasmon polaritons -- nanoscale-level linked waves of electrons and electromagnetic fields in a material, typically caused by light or other electromagnetic waves.
Published What no one has seen before -- simulation of gravitational waves from failing warp drive



Physicists have been exploring the theoretical possibility of spaceships driven by compressing the four-dimensional spacetime for decades. Although this so-called 'warp drive' originates from the realm of science fiction, it is based on concrete descriptions in general relativity. A new study takes things a step further -- simulating the gravitational waves such a drive might emit if it broke down.
Published Organic nanozymes have broad applications from food and agriculture to biomedicine



Nanozymes are tiny, engineered substances that mimic the catalytic properties of natural enzymes, and they serve a variety of purposes in biomedicine, chemical engineering, and environmental applications. They are typically made from inorganic materials, including metal-based elements, which makes them unsuitable for many purposes due to their toxicity and high production costs. Organic-based nanozymes partially overcome some of these problems and have the potential for a broader range of applications, including food and agriculture, but they are still in the early stages of development. A new paper provides an overview of the current state of organic nanozymes and their future potential.
Published Dark matter: A camera trap for the invisible



AI-powered image recognition could give researchers a new tool in hunt for dark matter.
Published Plant-inspired polymers for water purification



Researchers have synthesized a bio-inspired polymer for water purification. The polymer was designed to mimic phytochelatin, a plant protein that selectively captures and neutralizes harmful heavy metal ions. The hyperconfinement of the polymer enabled a flow-through system and effectively removed cadmium ions from contaminated water, making it safe to drink. The system was selective for heavy metals and provides a new way to remove specific contaminants from water.
Published Pioneering measurement of the acidity of ionic liquids using Raman spectroscopy



A study has made it possible to estimate experimentally the energy required to transfer protons from water to ionic liquids.