Showing 20 articles starting at article 281
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Inorganic Chemistry, Environmental: Biodiversity
Published Fading lights: Multiple threats to North America's firefly populations



Scientists have applied a data-driven approach to understanding firefly population dynamics on a continental scale. Key findings from this new study indicate that fireflies, part of the beetle order, are sensitive to various environmental factors, from short-term weather conditions to longer climatic trends, including the number of growing-degree days related to temperature accumulations.
Published When does a conductor not conduct?



A new study uncovers a switchable, atomically-thin metal-organic material that could be used in future low-energy electronic technologies. The study shows that electron interactions in this material create an unusual electrically-insulating phase in which electrons are 'frozen'. By reducing the population of electrons, the authors are able to unfreeze the remaining electrons, allowing for controlled transitions between insulating and electrically-conductive phases: the key to the on-off binary operations of classical computing.
Published Scientists develop strong yet reusable adhesive from smart materials



Scientists have developed a smart, reusable adhesive more than ten times stronger than a gecko's feet adhesion, pointing the way for development of reusable superglue and grippers capable of holding heavy weights across rough and smooth surfaces. The research team found a way to maximize the adhesion of the smart adhesives by using shape-memory polymers, which can stick and detach easily when needed simply by heating them. This smart adhesive can support extremely heavy weights, opening new possibilities for robotic grippers that allow humans to scale walls effortlessly, or climbing robots that can cling onto ceilings for survey or repair applications.
Published Physicists show that light can generate electricity even in translucent materials



Some materials are transparent to light of a certain frequency. When such light is shone on them, electrical currents can still be generated, contrary to previous assumptions. Scientists have managed to prove this.
Published Imaging technique shows new details of peptide structures



Researchers outline how they used a chemical probe to light up interlocking peptides. Their technique will help scientists differentiate synthetic peptides from toxic types found in Alzheimer's disease.
Published More efficient molecular motor widens potential applications



Light-driven molecular motors were first developed nearly 25 years ago. However, making these motors do actual work proved to be a challenge. In a new paper, scientists describe improvements that bring real-life applications closer.
Published Climate change could become the main driver of biodiversity decline by mid-century



Global biodiversity has declined between 2% and 11% during the 20th century due to land-use change alone, according to a large multi-model study. Projections show climate change could become the main driver of biodiversity decline by the mid-21st century.
Published Curiosity promotes biodiversity



Cichlid fishes exhibit differing degrees of curiosity. The cause for this lies in their genes, as reported by researchers. This trait influences the cichlids' ability to adapt to new habitats.
Published Key to efficient and stable organic solar cells



A team of researchers has made a significant breakthrough in the field of organic photovoltaics.
Published Diamond dust shines bright in Magnetic Resonance Imaging



An unexpected discovery surprised a scientist: nanometer-sized diamond particles, which were intended for a completely different purpose, shone brightly in a magnetic resonance imaging experiment -- much brighter than the actual contrast agent, the heavy metal gadolinium. Could diamond dust -- in addition to its use in drug delivery to treat tumor cells -- one day become a novel contrast agent used for MRI?
Published Deer are expanding north, and that's not good for caribou



In the boreal forest of Western Canada, researchers have considered that both changing climate and increased habitat alteration have enabled deer to push farther north.
Published 'Like a nanoscopic Moon lander': Scientists unlock secret of how pyramidal molecules move across surfaces



Scientists have watched a molecule move across a graphite surface in unprecedented detail. It turns out this particular molecule moves like a Moon lander -- and the insights hold potential for future nanotechnologies.
Published Freeze casting: A guide to creating hierarchically structured materials



Freeze casting is an elegant, cost-effective manufacturing technique to produce highly porous materials with custom-designed hierarchical architectures, well-defined pore orientation, and multifunctional surface structures. Freeze-cast materials are suitable for many applications, from biomedicine to environmental engineering and energy technologies.
Published Unveiling the lionfish invasion in the Mediterranean Sea



Researchers have published a comprehensive study on the invasion of lionfish in the Mediterranean Sea, highlighting a rapid spread and the potential ecological impacts. The research shows the lionfish species Pterois miles has significantly expanded its territory in the Mediterranean since the invasion began around ten years ago. The invasive species has established presence in the eastern Mediterranean, with observations now extending to colder waters previously thought to be unsuitable for the species.
Published Diversity and productivity go branch-in-branch



Researchers found that forests with higher trait diversity not only adapt better to climate change but may also thrive. The study unveiled how tree functional trait diversity plays a pivotal role in mitigating climate warming. In the face of environmental stress, these diverse trees have been shown to maintain higher productivity levels, in contrast to monoculture forests.
Published A chemical mystery solved -- the reaction explaining large carbon sinks



A mystery that has puzzled the scientific community for over 50 years has finally been solved. A team has discovered that a certain type of chemical reaction can explain why organic matter found in rivers and lakes is so resistant to degradation.
Published Making diamonds at ambient pressure



Researchers have grown diamonds under conditions of 1 atmosphere pressure and at 1025 degrees Celsius using a liquid metal alloy composed of gallium, iron, nickel, and silicon, thus breaking the existing paradigm. The discovery of this new growth method opens many possibilities for further basic science studies and for scaling up the growth of diamonds in new ways.
Published Lead-vacancy centers in diamond as building blocks for large-scale quantum networks



A lead-vacancy (PbV) center in diamond has been developed as a quantum emitter for large-scale quantum networks by researchers. This innovative color center exhibits a sharp zero-phonon-line and emits photons with specific frequencies. The PbV color center stands out among other diamond color centers due to its ability to maintain optical properties at relatively high temperatures of 16 K. This makes it well-suited for transferring quantum information in large-scale quantum networks.
Published Critical minerals recovery from electronic waste



A nontoxic separation process recovers critical minerals from electronic scrap waste.
Published Magnetic with a pinch of hydrogen



Magnetic two-dimensional materials consisting of one or a few atomic layers have only recently become known and promise interesting applications, for example for the electronics of the future. So far, however, it has not been possible to control the magnetic states of these materials well enough. A research team is now presenting an innovative idea that could overcome this shortcoming -- by allowing the 2D layer to react with hydrogen.