Chemistry: Biochemistry Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: General Physics: Optics
Published

A new study highlights potential of ultrafast laser processing for next-gen devices      (via sciencedaily.com)     Original source 

A new study uncovers the remarkable potential of ultrafast lasers that could provide innovative solutions in 2D materials processing for many technology developers such as high-speed photodetectors, flexible electronics, biohybrids, and next-generation solar cells.

Chemistry: General Chemistry: Inorganic Chemistry Physics: Optics
Published

An optical lens that senses gas      (via sciencedaily.com)     Original source 

A research team has developed a small optical lens, only a few millimeters in size, whose refractive behavior changes in the presence of gas. This 'intelligent' behavior of the micro-lens is enabled by the hybrid glass material from which it is made. The molecular structure of the lens consists of a three-dimensional lattice with cavities that can accommodate gas molecules, thereby affecting the optical properties of the material.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Ecology: Sea Life Environmental: General Geoscience: Geochemistry
Published

Towards non-toxic antifouling agents: A novel method for total synthesis of scabrolide F      (via sciencedaily.com)     Original source 

Norcembranolide diterpenes, isolated from the soft corals of the genus Sinularia, are important compounds for the development of new drugs, owing to their diverse biological activities. However, total synthesis methods for these compounds are scarce. Now, a team of researchers has achieved the total synthesis of scabrolide F, a norcembranolide diterpene. They also revealed its non-toxic antifouling properties. This novel method can lead to the development of new drugs and antifouling agents.

Offbeat: General Offbeat: Space Space: Exploration Space: General Space: The Solar System
Published

Surprising phosphate finding in NASA's OSIRIS-REx asteroid sample      (via sciencedaily.com)     Original source 

Early analysis of the asteroid Bennu sample returned by NASA's OSIRIS-REx mission has revealed dust rich in carbon, nitrogen, and organic compounds, all of which are essential components for life as we know it. Dominated by clay minerals, particularly serpentine, the sample mirrors the type of rock found at mid-ocean ridges on Earth. The magnesium-sodium phosphate found in the sample hints that the asteroid could have splintered off from an ancient, small, primitive ocean world.

Space: Astronomy Space: Astrophysics Space: Exploration Space: General Space: The Solar System
Published

New evidence for how heat is transported below the sun's surface      (via sciencedaily.com)     Original source 

Solar physicists have revealed the interior structure of the sun's supergranules, a flow structure that transports heat from the sun's hidden interior to its surface. The researchers' analysis of the supergranules presents a challenge to the current understanding of solar convection.

Offbeat: General Offbeat: Space Space: Astronomy Space: Exploration Space: General Space: Structures and Features Space: The Solar System
Published

Telltale greenhouse gases could signal alien activity      (via sciencedaily.com)     Original source 

If aliens modified a planet in their solar system to make it warmer, we'd be able to tell. A new study identifies the artificial greenhouse gases that would be giveaways of a terraformed planet.

Space: Exploration Space: General Space: The Solar System
Published

Marsquakes may help reveal whether liquid water exists underground on red planet      (via sciencedaily.com)     Original source 

If liquid water exists today on Mars, it may be too deep underground to detect with traditional methods used on Earth. But listening to earthquakes that occur on Mars -- or marsquakes -- could offer a new tool in the search.

Offbeat: General Offbeat: Space Space: Astronomy Space: Astrophysics Space: Exploration Space: General Space: Structures and Features Space: The Solar System
Published

First of its kind detection made in striking new Webb image      (via sciencedaily.com)     Original source 

For the first time, a phenomenon astronomers have long hoped to directly image has been captured by NASA's James Webb Space Telescope's Near-Infrared Camera (NIRCam). In this stunning image of the Serpens Nebula, the discovery lies in the northern area of this young, nearby star-forming region.

Offbeat: General Offbeat: Space Space: Exploration Space: General Space: The Solar System
Published

Geologists expect Chang'e-6 lunar surface samples to contain volcanic rock and impact ejecta      (via sciencedaily.com)     Original source 

On June 25, China's Chang'e-6 (CE-6) lunar probe is set to return to Earth, carrying the first surface samples collected from the farside of the Moon. In anticipation of this historic event, scientists are publishing their predictions for the unique materials that may be found in the CE-6 samples.

Chemistry: General Chemistry: Inorganic Chemistry Physics: General Physics: Optics
Published

Novel application of optical tweezers: Colorfully showing molecular energy transfer      (via sciencedaily.com)     Original source 

Using a novel non-contact approach, a research team has successfully controlled the speed and efficiency of Forster resonance energy transfer between fluorescent molecules by varying the intensity of a laser beam.

Offbeat: General Offbeat: Space Space: Astronomy Space: Astrophysics Space: Cosmology Space: Exploration Space: General Space: Structures and Features Space: The Solar System
Published

Star clusters observed within a galaxy in the early Universe      (via sciencedaily.com)     Original source 

The history of how stars and galaxies came to be and evolved into the present day remains among the most challenging astrophysical questions to solve yet, but new research brings us closer to understanding it. New insights about young galaxies during the Epoch of Reionization have been revealed. Observations with the James Webb Space Telescope (JWST) of the galaxy Cosmic Gems arc (SPT0615-JD) have confirmed that the light of the galaxy was emitted 460 million years after the big bang. What makes this galaxy unique is that it is magnified through an effect called gravitational lensing, which has not been observed in other galaxies formed during that age.

Chemistry: General Chemistry: Inorganic Chemistry
Published

Novel catalysts for improved methanol production using carbon dioxide dehydrogenation      (via sciencedaily.com)     Original source 

Encapsulating copper nanoparticles within hydrophobic porous silicate crystals has been shown to significantly enhance the catalytic activity of copper-zinc oxide catalysts used in methanol synthesis via CO2 hydrogenation. The innovative encapsulation structure effectively inhibits the thermal aggregation of copper particles, leading to enhanced hydrogenation activity and increased methanol production. This breakthrough paves the way for more efficient methanol synthesis from CO2.

Offbeat: General Offbeat: Space Space: Astronomy Space: Astrophysics Space: Exploration Space: General Space: The Solar System
Published

Iron meteorites hint that our infant solar system was more doughnut than dartboard      (via sciencedaily.com)     Original source 

Iron meteorites are remnants of the metallic cores of the earliest asteroids in our solar system. Iron meteorites contain refractory metals, such as iridium and platinum, that formed near the sun but were transported to the outer solar system. New research shows that for this to have happened, the protoplanetary disk of our solar system had to have been doughnut-shaped because the refractory metals could not have crossed the large gaps in a target-shaped disk of concentric rings. The paper suggests that the refractory metals moved outward as the protoplanetary disk rapidly expanded, and were trapped in the outer solar system by Jupiter.

Offbeat: General Offbeat: Space Space: General Space: The Solar System
Published

Titan's lakes may be shaped by waves      (via sciencedaily.com)     Original source 

Geologists studied Titan's shorelines and showed through simulations that coastlines of the moon's methane- and ethane-filled seas have likely been shaped by waves. Until now, scientists have found indirect and conflicting signs of wave activity, based on Cassini images of Titan's surface.

Offbeat: General Offbeat: Space Space: Astronomy Space: Exploration Space: General Space: The Solar System
Published

Jupiter's great red spot is not the same one Cassini observed in 1600s      (via sciencedaily.com)     Original source 

Jupiter's iconic Great Red Spot has persisted for at least 190 years and is likely a different spot from the one observed by the astronomer Giovanni Domenico Cassini in 1665, a new study reports. The Great Red Spot we see today likely formed because of an instability in the planet's intense atmospheric winds, producing a long, persistent atmospheric cell, the study also finds.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Offbeat: General
Published

Researchers create new class of materials called 'glassy gels'      (via sciencedaily.com)     Original source 

Researchers have created a new class of materials called 'glassy gels' that are very hard and difficult to break despite containing more than 50% liquid. Coupled with the fact that glassy gels are simple to produce, the material holds promise for a variety of applications.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Mathematics: Modeling Physics: Optics
Published

Custom-made molecules designed to be invisible while absorbing near-infrared light      (via sciencedaily.com)     Original source 

Researchers used theoretical calculations assessing electron orbital symmetry to synthesize new molecule designed to be both transparent and colorless while absorbing near-infrared light. This compound demonstrates the first systematic approach to producing such materials and have applications in advanced electronics. This compound also shows semiconducting properties.

Chemistry: General Chemistry: Inorganic Chemistry Energy: Batteries Physics: Optics
Published

MXenes for energy storage      (via sciencedaily.com)     Original source 

A new method in spectromicroscopy significantly improves the study of chemical reactions at the nanoscale, both on surfaces and inside layered materials. Scanning X-ray microscopy (SXM) at MAXYMUS beamline of BESSY II enables the investigation of chemical species adsorbed on the top layer (surface) or intercalated within the MXene electrode (bulk) with high chemical sensitivity.

Chemistry: General Chemistry: Inorganic Chemistry Engineering: Nanotechnology Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Novel method for measuring nano/microplastic concentrations in soil using spectroscopy      (via sciencedaily.com)     Original source 

Current techniques for measuring nano/microplastic (N/MP) concentrations in soil require the soil organic matter content to be separated and have limited resolution for analyzing N/MPs sized <1 m. Therefore, researchers have developed a novel yet simple method to measure N/MP concentration in different soil types using spectroscopy at two wavelengths. This method does not require the soil to be separated in order to detect the N/MPs and can accurately quantify N/MPs regardless of their size.