Showing 20 articles starting at article 721
< Previous 20 articles Next 20 articles >
Categories: Anthropology: General, Chemistry: Inorganic Chemistry
Published Taking photoclick chemistry to the next level


Researchers have been able to substantially improve photoclick chemistry. They were able to boost the reactivity of the photoclick compound in the popular PQ-ERA reaction through strategic molecular substitution. They now report a superb photoreaction quantum yield, high reaction rates and notable oxygen tolerance.
Published Surpassing the human eye: Machine learning image analysis rapidly determines chemical mixture composition


Machine learning model provides quick method for determining the composition of solid chemical mixtures using only photographs of the sample.
Published New 'droplet battery' could pave the way for miniature bio-integrated devices


Researchers have developed a miniature battery that could be used to power tiny devices integrated into human tissues. The design uses an ionic gradient across a chain of droplets -- inspired by how electric eels generate electricity. The device was able to regulate the biological activity of human neurons. This could open the way to the development of tiny bio-integrated devices, with a range of applications in biology and medicine.
Published Three-eyed distant relative of insects and crustaceans reveals amazing detail of early animal evolution



Scientists use cutting edge scanning technology to reconstruct 'fossil monster' that lived half a billion years ago. The creature's soft anatomy was well-preserved, allowing it to be imaged almost completely: It fills a gap in our understanding of the evolution of arthropods such as insects and crustaceans.
Published A first for ferrocene: Organometallic capsule with unusual charge-transfer interactions


An organometallic capsule that can reversibly assemble and disassemble in response to chemical stimuli was recently developed by chemists. Comprising ferrocene-based bent amphiphiles, this new capsule can act as a host for various types of guest molecules, such as electron acceptors and dyes. Thanks to the controllable release of its cargo, the capsule would find applications in catalysis, medicine, and biotechnology.
Published Direct power generation from methylcyclohexane using solid oxide fuel cells



Methylcyclohexane is very promising as a hydrogen carrier that can safely and efficiently transport and store hydrogen. However, the dehydrogenation process using catalysts has issues due to its durability and large energy loss. Recently, researchers have succeeded in using solid oxide fuel cells to generate electricity directly from methylcyclohexane and recover toluene for reuse. This research is expected to not only reduce energy requirements but also explore new chemical synthesis by fuel cells.
Published Quantum computer unveils atomic dynamics of light-sensitive molecules


Researchers have implemented a quantum-based method to observe a quantum effect in the way light-absorbing molecules interact with incoming photons. Known as a conical intersection, the effect puts limitations on the paths molecules can take to change between different configurations. The observation method makes use of a quantum simulator, developed from research in quantum computing, and offers an example of how advances in quantum computing are being used to investigate fundamental science.
Published Making the invisible, visible: New method makes mid-infrared light detectable at room temperature


Scientists have developed a new method for detecting mid-infrared (MIR) light at room temperature using quantum systems.
Published Scientists use quantum device to slow down simulated chemical reaction 100 billion times


Using a trapped-ion quantum computer, the research team witnessed the interference pattern of a single atom caused by a 'conical intersection'. Conical intersections are known throughout chemistry and are vital to rapid photo-chemical processes such as light harvesting in human vision or photosynthesis.
Published Wastewater pipe dig reveals 'fossil treasure trove'



A new article describes the 266 fossil species as one of the richest and most diverse groups of three-million-year-old fauna ever found in New Zealand. At least ten previously unknown species will be described and named in future research. Fossils of the world's oldest known flax snails, an extinct sawshark spine, and great white shark teeth have all been found in a mound of sand excavated from beneath Mangere Wastewater Treatment Plant in 2020.
Published Breakthrough in beta-lactam synthesis using nickel catalysts


Researchers have made a significant breakthrough in the field of asymmetric synthesis of beta-lactams, which are prominent in bioactive compounds. Their innovative approach employs nickel and hydrocarbon sources that are abundant on Earth to access value-added beta-lactam products. The employment of nickel-hydride catalysis and alkenyl dioxazolone derivatives gives rise to the selective formation of four-membered lactam products.
Published Light regulates structural conversion of chiral molecules


A team of chemists have developed a novel concept in which a mixture of molecules that behave like mirror images is converted to a single form. To this end, they use light as external energy source. The conversion is relevant e.g. for the preparation of drugs.
Published Malaysian rock art found to depict elite -- Indigenous conflict



Researchers have dated drawings of Gua Sireh Cave in Sarawak, uncovering a sad story of conflict in the process.
Published Hot chemistry quickly transforms aromatic molecules into harmful aerosols


A research group has established key early steps in the conversion of aromatic molecules, a major constituent of traffic and other urban volatile emissions, into aerosol. Their findings increase understanding of the chemical processes that degrade urban air quality and influence climate change.
Published Scientists develop fermionic quantum processor


Researchers have designed a new type of quantum computer that uses fermionic atoms to simulate complex physical systems. The processor uses programmable neutral atom arrays and is capable of simulating fermionic models in a hardware-efficient manner using fermionic gates. The team demonstrated how the new quantum processor can efficiently simulate fermionic models from quantum chemistry and particle physics.
Published Buffalo slaughter left lasting impact on Indigenous peoples



The near extinction of the North American bison in the late 1800s caused a devastating, lasting economic shock to Indigenous peoples whose lives depended on the animals, an economic study finds.
Published Steam condenser coating could save 460M tons of CO2 annually


If coal and natural gas power generation were 2% more efficient, then, every year, there could be 460 million fewer tons of carbon dioxide released and 2 trillion fewer gallons of water used. A recent innovation to the steam cycle used in fossil fuel power generation could achieve this.
Published The trio -- nickel, palladium, and platinum -- for enhanced hydrogen evolution


A research team enhanced hydrogen evolution catalyst through stepwise deposition.
Published Topology's role in decoding energy of amorphous systems


Researchers used topological data analysis to improve the predictions of physical properties of amorphous materials by machine-learning algorithms. This may allow for cheaper and faster calculations of material properties.
Published Bronze Age family systems deciphered: Palaeogeneticists analyse a 3,800-year-old extended family



Researchers have analyzed the genomes of skeletons from an extended family from a Bronze Age necropolis in the Russian steppe. The 3,800-year-old 'Nepluyevsky' burial mound was excavated several years ago and is located on the geographical border between Europe and Asia. Using statistical genomics, the family and marriage relationships of this society have now been deciphered.