Showing 20 articles starting at article 121
< Previous 20 articles Next 20 articles >
Categories: Archaeology: General, Chemistry: Inorganic Chemistry
Published Researchers create new class of materials called 'glassy gels'



Researchers have created a new class of materials called 'glassy gels' that are very hard and difficult to break despite containing more than 50% liquid. Coupled with the fact that glassy gels are simple to produce, the material holds promise for a variety of applications.
Published The world's oldest wine discovered



A white wine over 2,000 years old, of Andalusian origin, is the oldest wine ever discovered.
Published Custom-made molecules designed to be invisible while absorbing near-infrared light



Researchers used theoretical calculations assessing electron orbital symmetry to synthesize new molecule designed to be both transparent and colorless while absorbing near-infrared light. This compound demonstrates the first systematic approach to producing such materials and have applications in advanced electronics. This compound also shows semiconducting properties.
Published MXenes for energy storage



A new method in spectromicroscopy significantly improves the study of chemical reactions at the nanoscale, both on surfaces and inside layered materials. Scanning X-ray microscopy (SXM) at MAXYMUS beamline of BESSY II enables the investigation of chemical species adsorbed on the top layer (surface) or intercalated within the MXene electrode (bulk) with high chemical sensitivity.
Published Novel method for measuring nano/microplastic concentrations in soil using spectroscopy



Current techniques for measuring nano/microplastic (N/MP) concentrations in soil require the soil organic matter content to be separated and have limited resolution for analyzing N/MPs sized <1 m. Therefore, researchers have developed a novel yet simple method to measure N/MP concentration in different soil types using spectroscopy at two wavelengths. This method does not require the soil to be separated in order to detect the N/MPs and can accurately quantify N/MPs regardless of their size.
Published Golden ball mills as green catalysts



A gold-coated milling vessel for ball mills proved to be a real marvel: without any solvents or environmentally harmful chemicals, the team was able to use it to convert alcohols into aldehydes. The catalytic reaction takes place at the gold surface and is mechanically driven. The vessel can be reused multiple times. 'This opens up new prospects for the use of gold in catalysis and shows how traditional materials can contribute to solving modern environmental problems in an innovative way,' says Borchardt.
Published Reduction of esters by a novel photocatalyst



A ubiquitous compound, called ester can be broken down to produce desirable alcohols and other chemicals for use across industries including pharmaceuticals and cosmetics, but the process can be costly, both financially and in terms of the environment. Researchers developed a novel photocatalyst 'N-BAP.' When irradiated with blue light, the photocatalyst reduces esters in the presence of oxalate, a negatively charged molecule found widely in nature, resulting in the desired alcohols.
Published A liquid crystal source of photon pairs



Spontaneous parametric down-conversion (SPDC), as a source of entangled photons, is of great interest for quantum physics and quantum technology, but so far it could be only implemented in solids. Researchers have demonstrated, for the first time, SPDC in a liquid crystal. The results open a path to a new generation of quantum sources: efficient and electric-field tunable.
Published Scientists preserve DNA in an amber-like polymer



With their 'T-REX' method, researchers developed a glassy, amber-like polymer that can be used for long-term storage of DNA, such as entire human genomes or digital files such as photos.
Published Ancient Syrian diets resembled the modern 'Mediterranean diet'



Thousands of years ago, people in ancient Syria likely ate mostly grains, grapes, olives and a small amount of dairy and meat -- similar to today's 'Mediterranean diet,' according to a new study.
Published Greek Island was home to Bronze Age purple dye workshop



The Greek island of Aegina was home to a Late Bronze Age purple dye workshop, according to a new study.
Published A 'liquid battery' advance



A team aims to improve options for renewable energy storage through work on an emerging technology -- liquids for hydrogen storage.
Published Uncovering the nature of emergent magnetic monopoles



To understand the unique physical phenomena associated with the properties of magnetic hedgehogs and antihedgehogs, which behave as virtual magnetic monopoles and antimonopoles respectively, it is essential to study their intrinsic excitations. In a new study, researchers revealed the dynamical nature of collective excitation modes in hedgehog lattices in itinerant chiral magnets. Their findings serve as the foundation for studying the dynamics of emergent magnetic monopoles in magnets.
Published Origin and spread of malaria



Researchers have reconstructed the evolutionary history and global spread of malaria over the past 5,500 years, identifying trade, warfare, and colonialism as major catalysts for its dispersal.
Published Ritual sacrifice at Chichén Itzá



Rising to power in the wake of the Classic Maya collapse, Chichen Itz was among the largest and most influential cities of the ancient Maya, but much about its political connections and ritual life remain poorly understood. Close kin relationships, including two pairs of identical twins, suggests a connection to the Maya origin myths of the Popol Vuh.
Published 3D-printed mini-actuators can move small soft robots, lock them into new shapes



Researchers have demonstrated miniature soft hydraulic actuators that can be used to control the deformation and motion of soft robots that are less than a millimeter thick. The researchers have also demonstrated that this technique works with shape memory materials, allowing users to repeatedly lock the soft robots into a desired shape and return to the original shape as needed.
Published Shedding light on the origin of a genetic variant underlying fungal infections



Variants in the CARD9 gene increase susceptibility to severe fungal infections. However, individuals in different parts of the world tend to carry specific CARD9 variants, making it complex to track the origin of these mutations. In a recent study, a research team conducted genetic analyses on Japanese, Korean, and Chinese patients, revealing that they all shared a variant of CARD9 stemming from a common ancestor from less than 4,000 years ago.
Published Semiconductor doping and electronic devices: Heating gallium nitride and magnesium forms superlattice



A study revealed that a simple thermal reaction of gallium nitride with metallic magnesium results in the formation of a distinctive superlattice structure. This represents the first time researchers have identified the insertion of 2D metal layers into a bulk semiconductor. By carefully observing materials through various cutting-edge characterization techniques, the researchers uncovered new insights into the process of semiconductor doping and elastic strain engineering.
Published Looking for a new battery platform? Focus on the essentials



In facing life's many challenges, we often opt for complex approaches to finding solutions. Yet, upon closer examination, the answers are often simpler than we expect, rooted in the core "essence" of the issue. This approach was demonstrated by a research team in their publication on addressing the inherent issues of solid-state batteries.
Published Researchers engineer new approach for controlling thermal emission



If a material absorbs light, it will heat up. That heat must go somewhere, and the ability to control where and how much heat is emitted can protect or even hide such devices as satellites. An international team of researchers has published a novel method for controlling this thermal emission in Science.