Chemistry: General Chemistry: Inorganic Chemistry Energy: Batteries
Published

BESSY II shows how solid-state batteries degrade      (via sciencedaily.com)     Original source 

Solid-state batteries have several advantages: they can store more energy and are safer than batteries with liquid electrolytes. However, they do not last as long and their capacity decreases with each charge cycle. But it doesn't have to stay that way: Researchers are already on the trail of the causes.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Computer Science: Quantum Computers Engineering: Nanotechnology Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Moving from the visible to the infrared: Developing high quality nanocrystals      (via sciencedaily.com)     Original source 

Awarded the 2023 Nobel Prize in Chemistry, quantum dots have a wide variety of applications ranging from displays and LED lights to chemical reaction catalysis and bioimaging. These semiconductor nanocrystals are so small -- on the order of nanometers -- that their properties, such as color, are size dependent, and they start to exhibit quantum properties. This technology has been really well developed, but only in the visible spectrum, leaving untapped opportunities for technologies in both the ultraviolet and infrared regions of the electromagnetic spectrum.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Environmental: General Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Mining rare earth metals from electronic waste      (via sciencedaily.com)     Original source 

A small molecule that naturally serves as a binding site for metals in enzymes also proves useful for separating certain rare earth metals from each other. In a proof of concept, the process extracts europium directly from fluorescent powder in used energy-saving lamps in much higher quantities than existing methods. The researchers are now working on expanding their approach to other rare earth metals. They are in the process of founding a start-up to put the recycling of these raw materials into practice.

Biology: General Ecology: Endangered Species Offbeat: General Offbeat: Paleontology and Archeology Offbeat: Plants and Animals Paleontology: Fossils Paleontology: General
Published

Ancient large kangaroo moved mainly on four legs, according to new research      (via sciencedaily.com)     Original source 

A type of extinct kangaroo that lived during the Pleistocene around two and a half million to ten thousand years ago, known as the 'giant wallaby', was a poor hopper, a study has found.

Biology: Zoology Offbeat: General Offbeat: Paleontology and Archeology Offbeat: Plants and Animals Paleontology: Dinosaurs Paleontology: General
Published

Life underground suited newly discovered dinosaur fine      (via sciencedaily.com)     Original source 

A newly discovered ancestor of Thescelosaurus shows evidence that these animals spent at least part of their time in underground burrows. The new species contributes to a fuller understanding of life during the mid-Cretaceous -- both above and below ground.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Offbeat: General
Published

It takes a cool microscope and antifreeze to really look at ice      (via sciencedaily.com)     Original source 

Ice in nature is surrounded by liquid most of the time, and therefore it is key to understand how ice and liquid interact. A new study has now directly observe the precise shape of ice at the interface between ice and liquid -- by using antifreeze and a refrigerated microscope.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

Chemistry inspired by one-pot cooking      (via sciencedaily.com)     Original source 

Is it possible to create a new class of materials from very different substances using the 'one-pot synthesis' approach? Chemists explain how they enable the synthesis of such novel materials.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Physics: General Physics: Optics
Published

Visualizing short-lived intermediate compounds produced during chemical reactions      (via sciencedaily.com)     Original source 

Immobilizing small synthetic molecules inside protein crystals proves to be a promising avenue for studying intermediate compounds formed during chemical reactions, scientists report. By integrating this method with time-resolved serial femtosecond crystallography, they successfully visualized reaction dynamics and rapid structural changes occurring within reaction centers immobilized inside protein crystals. This innovative strategy holds significant potential for the intelligent design of drugs, catalysts, and functional materials.

Chemistry: General Chemistry: Inorganic Chemistry
Published

Ionic liquids: 'Don't shake it'      (via sciencedaily.com)     Original source 

Chemists have develop innovative ionic liquid synthesis and purification technology.

Environmental: General Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geography Geoscience: Oceanography Paleontology: Climate Paleontology: General
Published

The dawn of the Antarctic ice sheets      (via sciencedaily.com)     Original source 

In recent years global warming has left its mark on the Antarctic ice sheets. The 'eternal' ice in Antarctica is melting faster than previously assumed, particularly in West Antarctica more than East Antarctica. The root for this could lie in its formation, as an international research team has now discovered: sediment samples from drill cores combined with complex climate and ice-sheet modelling show that permanent glaciation of Antarctica began around 34 million years ago -- but did not encompass the entire continent as previously assumed, but rather was confined to the eastern region of the continent (East Antarctica).

Chemistry: Inorganic Chemistry Physics: General
Published

Scientists discover way to 'grow' sub-nanometer sized transistors      (via sciencedaily.com)     Original source 

A research team has implemented a novel method to achieve epitaxial growth of 1D metallic materials with a width of less than 1 nm. The group applied this process to develop a new structure for 2D semiconductor logic circuits. Notably, they used the 1D metals as a gate electrode of the ultra-miniaturized transistor.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

Chemists synthesize an improved building block for medicines      (via sciencedaily.com)     Original source 

Research could help drug developers improve the safety profiles of medications and reduce side effects.

Biology: Biochemistry Biology: Botany Biology: Cell Biology Chemistry: Biochemistry Chemistry: Inorganic Chemistry
Published

Mechanism of bio-inspired control of liquid flow      (via sciencedaily.com)     Original source 

The more we discover about the natural world, the more we find that nature is the greatest engineer. Past research implied that liquids can only be transported in fixed direction on species with specific liquid communication properties and cannot switch the transport direction. Recently, researchers have shown that an African plant controls water movement in a previously unknown way -- and this could inspire breakthroughs in a range of technologies in fluid dynamics and nature-inspired materials, including applications that require multistep and repeated reactions, such as microassays, medical diagnosis and solar desalination etc.

Chemistry: General Chemistry: Inorganic Chemistry Physics: General
Published

Mapping the surfaces of MXenes, atom by atom, reveals new potential for the 2D materials      (via sciencedaily.com)     Original source 

In the decade since their discovery, the family of two-dimensional materials called MXenes has shown a great deal of promise for applications ranging from water desalination and energy storage to electromagnetic shielding and telecommunications, among others. While researchers have long speculated about the genesis of their versatility, a recent study has provided the first clear look at the surface chemical structure foundational to MXenes' capabilities.

Biology: Marine Paleontology: Climate Paleontology: General
Published

Mighty floods of the Nile River during warmer and wetter climates      (via sciencedaily.com)     Original source 

Global warming as well as recent droughts and floods threaten large populations along the Nile Valley. Sediment cores off the Nile mouth reveal insights into the effects and causes of heavy rainfall episodes about 9,000 years ago. That will help to prepare for weather extremes in a changing climate.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Physics: Optics
Published

Using visible light to make pharmaceutical building blocks      (via sciencedaily.com)     Original source 

Chemists have discovered a way to use visible light to synthesize a class of compounds particularly well suited for use in pharmaceuticals. The class of compounds, called azetidines, had been previously identified as a good candidate to build therapeutic drugs, but the compounds are difficult to produce in chemical reactions. Now, a team has developed a method to produce a specific class of azetidines called monocyclic azetidines using visible light and a photocatalyst.

Chemistry: Inorganic Chemistry Energy: Nuclear Environmental: General Physics: General Physics: Optics
Published

Nuclear spectroscopy breakthrough could rewrite the fundamental constants of nature      (via sciencedaily.com)     Original source 

Raising the energy state of an atom's nucleus using a laser, or exciting it, would enable development of the most accurate atomic clocks ever to exist. This has been hard to do because electrons, which surround the nucleus, react easily with light, increasing the amount of light needed to reach the nucleus. By causing the electrons to bond with fluorine in a transparent crystal, UCLA physicists have finally succeeded in exciting the neutrons in a thorium atom's nucleus using a moderate amount of laser light. This accomplishment means that measurements of time, gravity and other fields that are currently performed using atomic electrons can be made with orders of magnitude higher accuracy.