Showing 20 articles starting at article 101
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Inorganic Chemistry, Paleontology: General
Published Research reveals the most complete dinosaur discovered in the UK in a century



The most complete dinosaur discovered in the UK in the last 100 years, with a pubic hip bone the size of a 'dinner plate', has been described in a new article.
Published BESSY II shows how solid-state batteries degrade



Solid-state batteries have several advantages: they can store more energy and are safer than batteries with liquid electrolytes. However, they do not last as long and their capacity decreases with each charge cycle. But it doesn't have to stay that way: Researchers are already on the trail of the causes.
Published Moving from the visible to the infrared: Developing high quality nanocrystals



Awarded the 2023 Nobel Prize in Chemistry, quantum dots have a wide variety of applications ranging from displays and LED lights to chemical reaction catalysis and bioimaging. These semiconductor nanocrystals are so small -- on the order of nanometers -- that their properties, such as color, are size dependent, and they start to exhibit quantum properties. This technology has been really well developed, but only in the visible spectrum, leaving untapped opportunities for technologies in both the ultraviolet and infrared regions of the electromagnetic spectrum.
Published Mining rare earth metals from electronic waste



A small molecule that naturally serves as a binding site for metals in enzymes also proves useful for separating certain rare earth metals from each other. In a proof of concept, the process extracts europium directly from fluorescent powder in used energy-saving lamps in much higher quantities than existing methods. The researchers are now working on expanding their approach to other rare earth metals. They are in the process of founding a start-up to put the recycling of these raw materials into practice.
Published Ancient large kangaroo moved mainly on four legs, according to new research



A type of extinct kangaroo that lived during the Pleistocene around two and a half million to ten thousand years ago, known as the 'giant wallaby', was a poor hopper, a study has found.
Published Life underground suited newly discovered dinosaur fine



A newly discovered ancestor of Thescelosaurus shows evidence that these animals spent at least part of their time in underground burrows. The new species contributes to a fuller understanding of life during the mid-Cretaceous -- both above and below ground.
Published It takes a cool microscope and antifreeze to really look at ice



Ice in nature is surrounded by liquid most of the time, and therefore it is key to understand how ice and liquid interact. A new study has now directly observe the precise shape of ice at the interface between ice and liquid -- by using antifreeze and a refrigerated microscope.
Published Chemistry inspired by one-pot cooking



Is it possible to create a new class of materials from very different substances using the 'one-pot synthesis' approach? Chemists explain how they enable the synthesis of such novel materials.
Published Visualizing short-lived intermediate compounds produced during chemical reactions



Immobilizing small synthetic molecules inside protein crystals proves to be a promising avenue for studying intermediate compounds formed during chemical reactions, scientists report. By integrating this method with time-resolved serial femtosecond crystallography, they successfully visualized reaction dynamics and rapid structural changes occurring within reaction centers immobilized inside protein crystals. This innovative strategy holds significant potential for the intelligent design of drugs, catalysts, and functional materials.
Published Ionic liquids: 'Don't shake it'



Chemists have develop innovative ionic liquid synthesis and purification technology.
Published The dawn of the Antarctic ice sheets



In recent years global warming has left its mark on the Antarctic ice sheets. The 'eternal' ice in Antarctica is melting faster than previously assumed, particularly in West Antarctica more than East Antarctica. The root for this could lie in its formation, as an international research team has now discovered: sediment samples from drill cores combined with complex climate and ice-sheet modelling show that permanent glaciation of Antarctica began around 34 million years ago -- but did not encompass the entire continent as previously assumed, but rather was confined to the eastern region of the continent (East Antarctica).
Published Scientists discover way to 'grow' sub-nanometer sized transistors



A research team has implemented a novel method to achieve epitaxial growth of 1D metallic materials with a width of less than 1 nm. The group applied this process to develop a new structure for 2D semiconductor logic circuits. Notably, they used the 1D metals as a gate electrode of the ultra-miniaturized transistor.
Published Chemists synthesize an improved building block for medicines



Research could help drug developers improve the safety profiles of medications and reduce side effects.
Published Mechanism of bio-inspired control of liquid flow



The more we discover about the natural world, the more we find that nature is the greatest engineer. Past research implied that liquids can only be transported in fixed direction on species with specific liquid communication properties and cannot switch the transport direction. Recently, researchers have shown that an African plant controls water movement in a previously unknown way -- and this could inspire breakthroughs in a range of technologies in fluid dynamics and nature-inspired materials, including applications that require multistep and repeated reactions, such as microassays, medical diagnosis and solar desalination etc.
Published Giant salamander-like creature was a top predator in the ice age before the dinosaurs



Meet Gaiasia jennyae, the swamp creature with a toilet seat-shaped head. It lived 40 million years before the first dinosaurs, and it was the top predator in its ecosystem.
Published Mapping the surfaces of MXenes, atom by atom, reveals new potential for the 2D materials



In the decade since their discovery, the family of two-dimensional materials called MXenes has shown a great deal of promise for applications ranging from water desalination and energy storage to electromagnetic shielding and telecommunications, among others. While researchers have long speculated about the genesis of their versatility, a recent study has provided the first clear look at the surface chemical structure foundational to MXenes' capabilities.
Published Extinct humans survived on the Tibetan plateau for 160,000 years



Bone remains found in a Tibetan cave 3,280 m above sea level indicate an ancient group of humans survived here for many millennia.
Published Mighty floods of the Nile River during warmer and wetter climates



Global warming as well as recent droughts and floods threaten large populations along the Nile Valley. Sediment cores off the Nile mouth reveal insights into the effects and causes of heavy rainfall episodes about 9,000 years ago. That will help to prepare for weather extremes in a changing climate.
Published Using visible light to make pharmaceutical building blocks



Chemists have discovered a way to use visible light to synthesize a class of compounds particularly well suited for use in pharmaceuticals. The class of compounds, called azetidines, had been previously identified as a good candidate to build therapeutic drugs, but the compounds are difficult to produce in chemical reactions. Now, a team has developed a method to produce a specific class of azetidines called monocyclic azetidines using visible light and a photocatalyst.
Published Nuclear spectroscopy breakthrough could rewrite the fundamental constants of nature



Raising the energy state of an atom's nucleus using a laser, or exciting it, would enable development of the most accurate atomic clocks ever to exist. This has been hard to do because electrons, which surround the nucleus, react easily with light, increasing the amount of light needed to reach the nucleus. By causing the electrons to bond with fluorine in a transparent crystal, UCLA physicists have finally succeeded in exciting the neutrons in a thorium atom's nucleus using a moderate amount of laser light. This accomplishment means that measurements of time, gravity and other fields that are currently performed using atomic electrons can be made with orders of magnitude higher accuracy.