Showing 20 articles starting at article 201
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Inorganic Chemistry, Paleontology: General
Published Researchers discover hidden step in dinosaur feather evolution



Scientists discover 'zoned development' in dinosaur skin, with zones of reptile-style scales and zones of bird-like skin with feathers. A new dinosaur skin fossil has been found to be composed of silica -- the same as glass.
Published Powering wearable devices with high-performing carbon nanotube yarns



Carbon nanotube (CNT) yarns are promising for flexible and fabric-type wearable materials that can convert waste heat into thermoelectricity. To improve the thermoelectric properties of CNT yarns, researchers dispersed CNT filaments in a highly viscous glycerol, enabling the production of CNT yarn with highly aligned bundles together with surfactants that prevent increased thermal conductivity. This innovative approach can significantly improve carbon nanotube-based thermoelectric materials, making it possible to power wearable devices using just body heat.
Published By listening, scientists learn how a protein folds



By converting their data into sounds, scientists discovered how hydrogen bonds contribute to the lightning-fast gyrations that transform a string of amino acids into a functional, folded protein. Their report offers an unprecedented view of the sequence of hydrogen-bonding events that occur when a protein morphs from an unfolded to a folded state.
Published Enhancing superconductivity of graphene-calcium superconductors



Researchers experimentally investigate the impact of introducing high-density calcium on the superconductivity of calcium-intercalated bilayer graphene.
Published Evolutionary history of extinct duck revealed



The study's findings show mergansers arrived in the New Zealand region at least seven million years ago from the Northern Hemisphere, in a separate colonisation event to that which led to the Brazilian merganser.
Published Seeking stronger steel, systematic look at 120 combinations of alloy elements provides clues



Investigating ways to create high-performance steel, a research team used theoretical calculations on 120 combinations of 12 alloy elements, such as aluminum and titanium, with carbon and nitrogen, while also systematically clarifying the bonding mechanism.
Published Diverse headgear in hoofed mammals evolved from common ancestor



From the small ossicones on a giraffe to the gigantic antlers of a male moose -- which can grow as wide as a car -- the headgear of ruminant hooved mammals is extremely diverse, and new research suggests that despite the physical differences, fundamental aspects of these bony adaptations likely evolved from a common ancestor.
Published Record low Antarctic sea ice 'extremely unlikely' without climate change



Scientists have found that the record-low levels of sea ice around Antarctica in 2023 were extremely unlikely to happen without the influence of climate change. This low was a one-in-a-2000-year event without climate change and four times more likely under its effects.
Published Expanding on the fundamental principles of liquid movement



We are living in a world surrounded by liquid and flow, and understanding the principles that govern its movement is vital in our high-tech world. Through mathematical modeling and experimentation, researchers have expanded on Tanner's Law -- a law in fluid dynamics that describes how non-volatile liquids move across surfaces -- to cover a wider range of volatile liquids. These findings have the potential to play a role in various liquid-based industries such as electronics cooling.
Published Magnetic imprint on deconfined nuclear matter



Scientists have the first direct evidence that the powerful magnetic fields created in off-center collisions of atomic nuclei induce an electric current in 'deconfined' nuclear matter. The study used measurements of how charged particles are deflected when they emerge from the collisions. The study provides proof that the magnetic fields exist and offers a new way to measure electrical conductivity in quark-gluon plasma.
Published New data-driven model rapidly predicts dehydrogenation barriers in solid-state materials



Researchers have developed a groundbreaking data-driven model to predict the dehydrogenation barriers of magnesium hydride, a promising material for solid-state hydrogen storage. This advancement holds significant potential for enhancing hydrogen storage technologies, a crucial component in the transition to sustainable energy solutions.
Published Diamond glitter: A play of colors with artificial DNA crystals



Using DNA origami, researchers have built a diamond lattice with a periodicity of hundreds of nanometers -- a new approach for manufacturing semiconductors for visible light.
Published Ancient arachnid from coal forests of America stands out for its spiny legs



The spiny legged 308-million-year-old arachnid Douglassarachne acanthopoda was discovered the famous Mazon Creek locality.
Published Chemists develop new method for making gamma chiral centers on simple carboxylic acids



C-H activation-based method should speed drug molecule design and diversification.
Published Breaking bonds to form bonds: Rethinking the Chemistry of Cations



A team of chemists has achieved a significant breakthrough in the field of chemical synthesis, developing a novel method for manipulating carbon-hydrogen bonds. This groundbreaking discovery provides new insights into the molecular interactions of positively charged carbon atoms. By selectively targeting a specific C--H bond, they open doors to synthetic pathways that were previously closed -- with potential applications in medicine.
Published How did sabre-toothed tigers acquire their long upper canine teeth?



In a groundbreaking study an international team of scientists has investigated the evolutionary patterns behind the development of sabre teeth, with some unexpected results along the way.
Published Shedding light on perovskite hydrides using a new deposition technique



Perovskite hydrides are promising materials for various emerging energy technologies, but measuring their intrinsic hydride-ion conductivity is difficult. In a recent study, researchers address this issue using a novel laser deposition technique in an H-radical atmosphere. Using this approach, they grew thin-film single crystals of two different perovskite hydrides and characterized their hydride-ion conductivity. These efforts will bolster research on hydrogen-related materials.
Published What fire ants can teach us about making better, self-healing materials



Fire ants form rafts to survive flooding, but how do those bonds work? And what can we learn from them? A professor is researching those questions to expand our knowledge of materials science.
Published Summers warm up faster than winters, fossil shells from Antwerp show



In a warmer climate, summers warm much faster than winters, according to research into fossil shells. With this knowledge we can better map the consequences of current global warming in the North Sea area.
Published A novel multifunctional catalyst turns methane into valuable hydrocarbons



The optimal design of a novel zeolite catalyst enables tandem reaction that turns greenhouse gases into value-added chemicals, report scientists. By tuning the separation between different active sites on the catalyst, they achieved the stepwise conversion of methane into methanol and then to hydrocarbons at mild conditions. These findings will help reduce energy costs and greenhouse gas emissions across various industrial fields.