Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Physics: Optics
Published

Researchers find access to new fluorescent materials      (via sciencedaily.com) 

Fluorescence is a fascinating natural phenomenon. It is based on the fact that certain materials can absorb light of a certain wavelength and then emit light of a different wavelength. Fluorescent materials play an important role in our everyday lives, for example in modern screens. Due to the high demand for applications, science is constantly striving to produce new and easily accessible molecules with high fluorescence efficiency.

Chemistry: General Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: General
Published

Some stirring required: Fluid mixing enables scalable manufacturing of soft polymer structures      (via sciencedaily.com) 

Researchers have developed and demonstrated an efficient and scalable technique that allows them to manufacture soft polymer materials in a dozen different structures, or 'morphologies,' from ribbons and nanoscale sheets to rods and branched particles. The technique allows users to finely tune the morphology of the materials at the micro- and nano-scale.

Chemistry: Inorganic Chemistry Engineering: Nanotechnology
Published

Knots smaller than human hair make materials unusually tough      (via sciencedaily.com) 

A micro-architected material made from tiny knots proves tougher and more durable than unknotted counterparts.

Chemistry: General Chemistry: Inorganic Chemistry Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Deconstructing tough, woody lignin      (via sciencedaily.com) 

It's a tough job, but someone's got to do it. In this case, the 'job' is the breakdown of lignin, the structural biopolymer that gives stems, bark and branches their signature woodiness. One of the most abundant terrestrial polymers on Earth, lignin surrounds valuable plant fibers and other molecules that could be converted into biofuels and other commodity chemicals -- if we could only get past that rigid plant cell wall.

Biology: Biotechnology Biology: Microbiology Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

New biosensor reveals activity of elusive metal that's essential for life      (via sciencedaily.com) 

A new biosensor offers scientists the first dynamic glimpses of manganese, an elusive metal ion that is essential for life.

Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Alternative Fuels
Published

A safe synthesis of hydrogen peroxide inspired by nature      (via sciencedaily.com) 

Scientists report the safe synthesis of hydrogen peroxide (H2O2), an oxidizing agent used in multiple industries including semiconductors, using a new rhodium-based catalyst. The catalyst is based on natural enzymes found in extremophile microorganisms, and the reaction meets three chemical ideals for H2O2 production: safe, use of a single vessel, and direct synthesis.

Chemistry: Inorganic Chemistry Physics: Optics
Published

Colloids get creative to pave the way for next generation photonics      (via sciencedaily.com) 

Scientists have devised a way of fabricating a complex structure, previously found only in nature, to open up new ways for manipulating and controlling light.

Chemistry: Inorganic Chemistry Energy: Technology
Published

Electrocatalysis under the atomic force microscope      (via sciencedaily.com) 

A further development in atomic force microscopy now makes it possible to simultaneously image the height profile of nanometer-fine structures as well as the electric current and the frictional force at solid-liquid interfaces. A team has succeeded in analyzing electrocatalytically active materials and gaining insights that will help optimize catalysts. The method is also potentially suitable for studying processes on battery electrodes, in photocatalysis or on active biomaterials.

Computer Science: Quantum Computers Offbeat: Computers and Math Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

In the world's smallest ball game, scientists throw and catch single atoms using light      (via sciencedaily.com) 

Researchers show that individual atoms can be caught and thrown using light. This is the first time an atom has been released from a trap -- or thrown -- and then caught by another trap. This technology could be used in quantum computing applications.

Computer Science: Virtual Reality (VR) Offbeat: Computers and Math Offbeat: Earth and Climate
Published

Researchers unveil smart contact lens, capable of implementing AR-based navigation      (via sciencedaily.com) 

A research team has introduced core technology for smart contact lenses that can implement AR-based navigation through a 3D printing process.

Chemistry: Inorganic Chemistry Energy: Nuclear Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Hitting nuclei with light may create fluid primordial matter      (via sciencedaily.com) 

A new analysis supports the idea that photons colliding with heavy ions create a fluid of 'strongly interacting' particles. The results indicate that photon-heavy ion collisions can create a strongly interacting fluid that responds to the initial collision geometry and that these collisions can form a quark-gluon plasma. These findings will help guide future experiments at the planned Electron-Ion Collider.

Chemistry: Inorganic Chemistry Physics: General
Published

A surprising way to trap a microparticle      (via sciencedaily.com) 

New study finds obstacles can trap rolling microparticles in fluid. Through simulations and experiments, physicists attribute the trapping effect to stagnant pockets of fluid, created by hydrodynamics. Random motions of the molecules within the fluid then 'kick' the microroller into a stagnant pocket, effectively trapping it.

Chemistry: General Chemistry: Inorganic Chemistry Offbeat: Computers and Math Physics: General
Published

Viable superconducting material created, say researchers      (via sciencedaily.com) 

Researchers report the creation of a superconducting material at both a temperature and pressure low enough for practical applications. In a new paper, the researchers describe a nitrogen-doped lutetium hydride that exhibits superconductivity at 69 degrees Fahrenheit and 10 kilobars (145,000 pounds per square inch, or psi) of pressure.

Chemistry: General Chemistry: Inorganic Chemistry Physics: Optics
Published

Enhancing at-home COVID tests with glow-in-the dark materials      (via sciencedaily.com) 

Researchers are using glow-in-the-dark materials to enhance and improve rapid COVID-19 home tests.

Computer Science: Encryption Offbeat: Computers and Math
Published

New breakthrough enables perfectly secure digital communications      (via sciencedaily.com) 

Researchers have achieved a breakthrough to enable 'perfectly secure' hidden communications for the first time. The method uses new advances in information theory methods to conceal one piece of content inside another in a way that cannot be detected. This may have strong implications for information security, besides further applications in data compression and storage.

Environmental: Ecosystems Mathematics: Statistics Offbeat: Computers and Math Offbeat: Earth and Climate Offbeat: Plants and Animals Offbeat: Space Space: Exploration Space: General
Published

Can artificial intelligence help find life on Mars or icy worlds?      (via sciencedaily.com) 

Researchers have mapped the sparse life hidden away in salt domes, rocks and crystals at Salar de Pajonales at the boundary of the Chilean Atacama Desert and Altiplano. Then they trained a machine learning model to recognize the patterns and rules associated with their distributions so it could learn to predict and find those same distributions in data on which it was not trained. In this case, by combining statistical ecology with AI/ML, the scientists could locate and detect biosignatures up to 87.5 percent of the time and decrease the area needed for search by up to 97 percent.

Chemistry: Inorganic Chemistry Energy: Batteries Energy: Technology
Published

Controlling electric double layer dynamics for next generation all-solid-state batteries      (via sciencedaily.com) 

Development of all-solid-state batteries is crucial to achieve carbon neutrality. However, their high surface resistance causes these batteries to have low output, limiting their applications. To this end, researchers have employed a novel technique to investigate and modulate electric double layer dynamics at the solid/solid electrolyte interface. The researchers demonstrate unprecedented control of response speed by over two orders of magnitude, a major steppingstone towards realization of commercial all-solid-state batteries.

Chemistry: Inorganic Chemistry Physics: Optics
Published

The positive outlooks of studying negatively-charged chiral molecules      (via sciencedaily.com) 

The ability to distinguish two chiral enantiomers is an essential analytical capability for chemical industries including pharmaceutical companies, flavor/odor engineering and forensic science. A new wave of chiral optical methods have shown significant improvements in chiral sensitivity, compared to their predecessors, leading to potential analytical advantages for chiral discrimination.