Showing 20 articles starting at article 41
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Inorganic Chemistry, Offbeat: Plants and Animals
Published Enhancing electron transfer for highly efficient upconversion OLEDs



Electron transfer is enhanced by minimal energetic driving force at the organic-semiconductor interface in upconversion (UC) organic light emitting diodes (OLEDs), resulting in efficient blue UC-OLEDs with low extremely turn-on voltage, scientists show. Their findings deepen the understanding of electron transfer mechanisms in organic optoelectronic devices and can lead to the development of efficient new optoelectronics without energy loss.
Published Surprise finding in study of environmental bacteria could advance search for better antibiotics



Researchers studying bacteria from freshwater lakes and soil say they have determined a protein's essential role in maintaining the germ's shape. Because the integrity of a bacterial cell's 'envelope' or enclosure is key to its survival, the finding could advance the search for new and better antibiotics.
Published Why do plants wiggle? New study provides answers



Decades after his voyage on the HMS Beagle, Charles Darwin became fascinated by why plants move as they grow -- spinning and twisting into corkscrews. Now, more than 150 years later, a new study may have solved the riddle.
Published Scientists create material that can take the temperature of nanoscale objects



Scientists recently discovered a one-dimensional nanoscale material whose color changes as temperature changes.
Published Exploring the structures of xenon-containing crystallites



Noble gases have a reputation for being unreactive, inert elements, but more than 60 years ago Neil Bartlett demonstrated the first way to bond xenon. He created XePtF6, an orange-yellow solid. Because it's difficult to grow sufficiently large crystals that contain noble gases, some of their structures -- and therefore functions -- remain elusive. Now, researchers have successfully examined tiny crystallites of noble gas compounds. They report structures of multiple xenon compounds.
Published Decoding the world's largest animal genome



Scientists have sequenced the largest genome of all animals, the lungfish genome. Their data help to explain how the fish-ancestors of today's land vertebrates were able to conquer land.
Published Giant fossil seeds from Borneo record ancient plant migration



Ancient fossil beans about the size of modern limes, and among the largest seeds in the fossil record, may provide new insight into the evolution of today's diverse Southeast Asian and Australian rainforests, according to researchers who identified the plants.
Published Scientists condition crocodiles to avoid killer cane toads



Scientists have trialled a new way to protect freshwater crocodiles from deadly invasive cane toads spreading across northern Australia.
Published Scientists achieve more than 98% efficiency removing nanoplastics from water



Linked to cardiovascular and respiratory diseases in people, nanoplastics continue to build up, largely unnoticed, in the world's bodies of water. The challenge remains to develop a cost-effective solution to get rid of nanoplastics while leaving clean water behind. That's where Mizzou comes in. Recently, researchers created a new liquid-based solution that eliminates more than 98% of these microscopic plastic particles from water.
Published Chemists synthesize plant-derived molecules that hold potential as pharmaceuticals



Chemists developed a way to synthesize complex molecules called oligocyclotryptamines, originally found in plants, which could hold potential as antibiotics, analgesics, or anticancer drugs.
Published Halogen bonding for selective electrochemical separation, path to sustainable chemical processing demonstrated



A team has reported the first demonstration of selective electrochemical separation driven by halogen bonding. This was achieved by engineering a polymer that modulates the charge density on a halogen atom when electricity is applied. The polymer then attracts only certain targets -- such as halides, oxyanions, and even organic molecules -- from organic solutions, a feature that has important implications for pharmaceuticals and chemical synthesis processes.
Published Rewriting the evolutionary history of critical components of the nervous system



A new study has rewritten the conventionally understood evolutionary history of certain ion channels -- proteins critical for electrical signaling in the nervous system. The study shows that the Shaker family of ion channels were present in microscopic single cell organisms well before the common ancestor of all animals and thus before the origin of the nervous system.
Published Reduce, reuse, 're-fly-cle'



Black soldier flies are now commercially used to consume organic waste -- but genetic modifications proposed by bioscientists could see the insects digesting a wider variety of refuse, while also creating raw ingredients for industry.
Published Breakthrough in nanotechnology: Viewing the invisible with advanced microscopy



Scientists have made a groundbreaking discovery in the field of nanotechnology. They have developed a novel microscopy method that allows for the unprecedented visualization of nanostructures and their optical properties.
Published Innovative study unveils a new path in green chemistry



Researchers have introduced a new advancement in the fight against climate change. Their study showcases a novel method for understanding the mechanisms of carbon dioxide re-utilization leading to fuels and chemicals. This work paves the road for the further optimization of this catalytic process driven by renewable electricity.
Published Wearable display tech: Full-color fiber LEDs based on perovskite quantum wires



A research team has developed full-color fiber light-emitting diodes utilizing perovskite quantum wires (PeQWs), paving the way for innovative wearable lighting and display devices.
Published Increasing solid-state electrolyte conductivity and stability using helical structure



Solid-state electrolytes have been explored for decades for use in energy storage systems and in the pursuit of solid-state batteries. These materials are safer alternatives to the traditional liquid electrolyte -- a solution that allows ions to move within the cell -- used in batteries today. However, new concepts are needed to push the performance of current solid polymer electrolytes to be viable for next generation materials.
Published Pioneering plasma-catalytic process for CO2 hydrogenation to methanol under ambient conditions



A research team reports a pioneering plasma-catalytic process for the hydrogenation of CO2 to methanol at room temperature and atmospheric pressure. This breakthrough addresses the limitations of traditional thermal catalysis, which often requires high temperatures and pressures, resulting in low CO2 conversion and methanol yield.
Published 3D laser printing with bioinks from microalgae



Microalgae such as the diatom Odontella aurita and the green alga Tetraselmis striata are especially suitable as 'biofactories' for the production of sustainable materials for 3D laser printing due to their high content in lipids and photoactive pigments. An international research team has succeeded for the first time in manufacturing inks for printing complex biocompatible 3D microstructures from the raw materials extracted from the microalgae.
Published New technology uses light to engrave erasable 3D images



Researchers invented a technique that uses a specialized light projector and a photosensitive chemical additive to imprint two- and three-dimensional images inside any polymer. The light-based engraving remains in the polymer until heat or light are applied, which erases the image and makes it ready to use again. The technology is intended for any situation where having detailed, precise visual data in a compact and easily customizable format could be critical, such as planning surgeries and developing architectural designs.