Showing 20 articles starting at article 421
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Organic Chemistry, Space: Astronomy
Published Lighting the path: Exploring exciton binding energies in organic semiconductors



Organic semiconductors are materials that find applications in various electronic devices. Exciton binding energy is an important attribute that influences the behavior of these materials. Now, researchers have employed advanced spectroscopic techniques to accurately determine these energies for various organic semiconductor materials, with a high precision of 0.1 electron volts. Their study reveals unexpected correlations that are poised to shape the future of organic optoelectronics, influence design principles, and find potential applications in bio-related materials.
Published Next-generation batteries could go organic, cobalt-free for long-lasting power



In the switch to 'greener' energy sources, the demand for rechargeable lithium-ion batteries is surging. However, their cathodes typically contain cobalt -- a metal whose extraction has high environmental and societal costs. Now, researchers in report evaluating an earth-abundant, carbon-based cathode material that could replace cobalt and other scarce and toxic metals without sacrificing lithium-ion battery performance.
Published Cobalt-free batteries could power cars of the future



A new battery material could offer a more sustainable way to power electric cars. The lithium-ion battery includes a cathode based on organic materials, instead of cobalt or nickel.
Published Origin of intense light in supermassive black holes and tidal disruption events revealed



A new study is a significant breakthrough in understanding Tidal Disruption Events (TDEs) involving supermassive black holes. The new simulations accurately replicate the entire sequence of a TDE from stellar disruption to the peak luminosity of the resulting flare.
Published Astronomers detect oldest black hole ever observed



Researchers have discovered the oldest black hole ever observed, dating from the dawn of the universe, and found that it is 'eating' its host galaxy to death.
Published The metalens meets the stars



Researchers have developed a 10-centimeter-diameter glass metalens that can image the sun, the moon and distant nebulae with high resolution. It is the first all-glass, large-scale metalens in the visible wavelength that can be mass produced using conventional CMOS fabrication technology.
Published Glowing COVID-19 diagnostic test prototype produces results in one minute



Cold, flu and COVID-19 season brings that now-familiar ritual: swab, wait, look at the result. But what if, instead of taking 15 minutes or more, a test could quickly determine whether you have COVID-19 with a glowing chemical? In a new study, researchers describe a potential COVID-19 test inspired by bioluminescence. Using a molecule found in crustaceans, they have developed a rapid approach that detects SARS-CoV-2 protein comparably to one used in vaccine research.
Published Study delivers detailed photos of galaxies' inner structures



High-resolution images captured by the James Webb Space Telescope are offering powerful insights into the complex dust patterns of nearby star-forming galaxies.
Published Study reveals a reaction at the heart of many renewable energy technologies



Chemists have mapped how proton-coupled electron transfers happen at the surface of an electrode. Their results could help researchers design more efficient fuel cells, batteries, or other energy technologies.
Published Astronomers produce most sensitive radio image ever of ancient star cluster



Astronomers have created the most sensitive radio image ever of a globular cluster, an ancient ball of tightly-packed stars.
Published Cryo-microscopy reveals nano-sized copy machine implicated in origin of life



RNA is thought to have sparked the origin of life by self-copying. Researchers have now revealed the atomic structure of an 'RNA copy machine' through cryo-EM. This breakthrough sheds light on a primordial RNA world and fuels advancements in RNA nanotechnology and medicine.
Published The power of pause: Controlled deposition for effective and long-lasting organic devices



In organic optoelectronic devices, the control of molecular deposition on thin films is important for optimal surface arrangement and device performance. In a recent study, researchers developed a new method for achieving stable deposition on thin films effectively. They also developed a tool to track real-time potential changes on the surface. These findings are expected to aid the improvement of organic devices, such as organic light-emitting diodes, in terms of efficacy and durability.
Published Earth-sized planet discovered in 'our solar backyard'



Astronomers have discovered a planet closer and younger than any other Earth-sized world yet identified. It's a remarkably hot world whose proximity to our own planet and to a star like our sun mark it as a unique opportunity to study how planets evolve.
Published Core-shell 'chemical looping' boosts efficiency of greener approach to ethylene production



Oxidative coupling of methane (OCM) is now one step closer to leaving the lab and entering the real world. Researchers have developed an OCM catalyst that exceeds 30 percent when it comes to the production of ethylene.
Published New catalytic technique creates key component of incontinence drug in less time



Researchers have developed a unique catalyst that promises to revolutionize drug synthesis. It overcomes a common problem associated with the production of drugs from ketones. Using their catalyst, the researchers synthesized a key component of the commonly used incontinence drug oxybutynin. Their results underscore the potential of the catalyst to improve drug discovery and development.
Published NASA scientists discover a novel galactic 'fossil'



Researchers at NASA's Goddard Space Flight Center have discovered X-ray activity that sheds light on the evolution of galaxies.
Published Capturing greenhouse gases with the help of light



Researchers use light-reactive molecules to influence the acidity of a liquid and thereby capture of carbon dioxide. They have developed a special mixture of different solvents to ensure that the light-reactive molecules remain stable over a long period of time. Conventional carbon capture technologies are driven by temperature or pressure differences and require a lot of energy. This is no longer necessary with the new light-based process.
Published Spying on a shape-shifting protein



Researchers are using crystallography to gain a better understanding of how proteins shapeshift. The knowledge can provide valuable insight into stopping and treating diseases.
Published Close encounters of the supermassive black hole kind



Astrophysicists have confirmed the accuracy of an analytical model that can unlock key information about supermassive black holes and the stars they engulf.
Published Our surprising magnetic galaxy



A team of astronomers has created the first-ever map of magnetic field structures within a spiral arm of our Milky Way galaxy. Previous studies on galactic magnetic fields only gave a very general picture, but the new study reveals that magnetic fields in the spiral arms of our galaxy break away from this general picture significantly and are tilted away from the galactic average by a high degree. The findings suggest magnetic fields strongly impact star-forming regions which means they played a part in the creation of our own solar system.