Showing 20 articles starting at article 381

< Previous 20 articles        Next 20 articles >

Categories: Chemistry: Organic Chemistry, Space: Cosmology

Return to the site home page

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology Chemistry: Biochemistry Chemistry: Organic Chemistry
Published

New Nijmegen method reveals hidden genetic variations      (via sciencedaily.com)     Original source 

Many hidden genetic variations can be detected with Chameleolyser, a new method. The information is already yielding new patient diagnoses and may also lead to the discovery of as yet unknown disease genes.

Space: Astronomy Space: Cosmology Space: General Space: Structures and Features Space: The Solar System
Published

Giant planets cast a deadly pall      (via sciencedaily.com)     Original source 

Giant gas planets can be agents of chaos, ensuring nothing lives on their Earth-like neighbors around other stars. New studies show, in some planetary systems, the giants tend to kick smaller planets out of orbit and wreak havoc on their climates.

Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry Energy: Alternative Fuels Energy: Batteries Energy: Fossil Fuels Energy: Technology Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Efficient biohybrid batteries      (via sciencedaily.com)     Original source 

Formic acid, which can be produced electrochemically from carbon dioxide, is a promising energy carrier. A research team has now developed a fast-charging hybrid battery system that combines the electrochemical generation of formic acid as an energy carrier with a microbial fuel cell. This novel, fast-charging biohybrid battery system can be used to monitor the toxicity of drinking water, just one of many potential future applications.

Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry Physics: Optics
Published

New frequency comb can identify molecules in 20-nanosecond snapshots      (via sciencedaily.com)     Original source 

Researchers have developed a device that can detect the presence of specific molecules in a sample every 20 nanoseconds, or billionths of a second. With this new capability, researchers can potentially use frequency combs to better understand the split-second intermediate steps in fast-moving processes ranging from the workings of hypersonic jet engines to the chemical reactions between enzymes that regulate cell growth.

Chemistry: Biochemistry Chemistry: Organic Chemistry Engineering: Nanotechnology
Published

'Plug and play' nanoparticles could make it easier to tackle various biological targets      (via sciencedaily.com)     Original source 

Engineers have developed modular nanoparticles that can be easily customized to target different biological entities such as tumors, viruses or toxins. The surface of the nanoparticles is engineered to host any biological molecules of choice, making it possible to tailor the nanoparticles for a wide array of applications, ranging from targeted drug delivery to neutralizing biological agents.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Chemistry: Biochemistry Chemistry: Organic Chemistry Energy: Alternative Fuels Environmental: General
Published

How to protect biocatalysts from oxygen      (via sciencedaily.com)     Original source 

There are high hopes for hydrogen as the key to the energy transition. A specific enzyme group found in algae and in bacteria can produce molecular hydrogen simply by catalyzing protons and electrons. However, the enzyme group is so sensitive to oxygen that commercial use of the hydrogen produced by this process as a green energy source is not yet possible. Researchers have now increased the oxygen stability of a hydrogen-producing enzyme by genetically generated channel blockages.

Chemistry: Biochemistry Chemistry: Organic Chemistry Energy: Technology Engineering: Nanotechnology
Published

DNA Origami nanoturbine sets new horizon for nanomotors      (via sciencedaily.com)     Original source 

Researchers introduce a pioneering breakthrough in the world of nanomotors -- the DNA origami nanoturbine. This nanoscale device could represent a paradigm shift, harnessing power from ion gradients or electrical potential across a solid-state nanopore to drive the turbine into mechanical rotations. The core of this pioneering discovery is the design, construction, and driven motion of a 'DNA origami' turbine, which features three chiral blades, all within a minuscule 25-nanometer frame, operating in a solid-state nanopore. By ingeniously designing two chiral turbines, researchers now have the capability to dictate the direction of rotation, clockwise or anticlockwise.

Space: Astronomy Space: Cosmology Space: Structures and Features
Published

First detection of heavy element from star merger      (via sciencedaily.com)     Original source 

A team of scientists has used multiple space and ground-based telescopes to observe an exceptionally bright gamma-ray burst, GRB 230307A, and identify the neutron star merger that generated an explosion that created the burst. Webb also helped scientists detect the chemical element tellurium in the explosion's aftermath.

Offbeat: General Offbeat: Space Space: Astronomy Space: Cosmology Space: Exploration Space: General Space: The Solar System
Published

Astrophysicists scan the Galaxy for signs of life      (via sciencedaily.com)     Original source 

Astrophysicists are scanning the Universe for 'technosignatures' emanating from distant planets that would provide support for the existence of intelligent, alien life. Researchers plan to monitor millions of star systems.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology Chemistry: Biochemistry Chemistry: Organic Chemistry
Published

Researchers develop DANGER analysis tool for the safer design of gene editing      (via sciencedaily.com)     Original source 

A team of researchers has developed a software tool that provides a way for the safer design of genome editing in all organisms with a transcriptome. For about a decade, researchers have used the CRISPR technology for genome editing. However, there are some challenges in the use of CRISPR. The new analysis system overcomes these challenges and allows researchers to perform safer on- and off-target assessments without a reference genome. It holds the potential for applications in medicine, agriculture, and biological research.

Offbeat: General Offbeat: Space Space: Astronomy Space: Astrophysics Space: Cosmology Space: Exploration Space: General
Published

Astronomers detect most distant fast radio burst to date      (via sciencedaily.com)     Original source 

An international team has spotted a remote blast of cosmic radio waves lasting less than a millisecond. This 'fast radio burst' (FRB) is the most distant ever detected. Its source was pinned down by the European Southern Observatory's (ESO) Very Large Telescope (VLT) in a galaxy so far away that its light took eight billion years to reach us. The FRB is also one of the most energetic ever observed; in a tiny fraction of a second it released the equivalent of our Sun's total emission over 30 years.

Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry Computer Science: General Engineering: Nanotechnology Mathematics: Modeling Offbeat: Computers and Math Offbeat: General
Published

International team develops novel DNA nano engine      (via sciencedaily.com)     Original source 

An international team of scientists has recently developed a novel type of nano engine made of DNA. It is driven by a clever mechanism and can perform pulsing movements. The researchers are now planning to fit it with a coupling and install it as a drive in complex nano machines.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular Chemistry: Biochemistry Chemistry: Organic Chemistry Computer Science: General Mathematics: Modeling
Published

Physical theory improves protein folding prediction      (via sciencedaily.com)     Original source 

Proteins are important molecules that perform a variety of functions essential to life. To function properly, many proteins must fold into specific structures. However, the way proteins fold into specific structures is still largely unknown. Researchers have developed a novel physical theory that can accurately predict how proteins fold. Their model can predict things previous models cannot. Improved knowledge of protein folding could offer huge benefits to medical research, as well as to various industrial processes.

Space: Astronomy Space: Astrophysics Space: Cosmology Space: Exploration Space: General Space: Structures and Features
Published

Black holes could come in 'perfect pairs' in an ever expanding Universe      (via sciencedaily.com)     Original source 

Researchers have shown it's theoretically possible for black holes to exist in perfectly balanced pairs -- held in equilibrium by a cosmological force -- mimicking a single black hole.

Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry Energy: Batteries Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

A miniature magnetic resonance imager made of diamond      (via sciencedaily.com)     Original source 

The development of tumors begins with miniscule changes within the body's cells; ion diffusion at the smallest scales is decisive in the performance of batteries. Until now the resolution of conventional imaging methods has not been high enough to represent these processes in detail. A research team has now developed diamond quantum sensors which can be used to improve resolution in magnetic imaging.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

Using computer algorithms to find molecular adaptations to improve COVID-19 drugs      (via sciencedaily.com)     Original source 

A new study focuses on using computer algorithms to generate adaptations to molecules in compounds for existing and potential medications that can improve those molecules' ability to bind to the main protease, a protein-based enzyme that breaks down complex proteins, in SARS-CoV-2, the virus that causes COVID-19.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Microbiology Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry Engineering: Nanotechnology Offbeat: General Offbeat: Plants and Animals
Published

Art with DNA -- Digitally creating 16 million colors by chemistry      (via sciencedaily.com)     Original source 

The DNA double helix is composed of two DNA molecules whose sequences are complementary to each other. The stability of the duplex can be fine-tuned in the lab by controlling the amount and location of imperfect complementary sequences. Fluorescent markers bound to one of the matching DNA strands make the duplex visible, and fluorescence intensity increases with increasing duplex stability. Now, researchers have succeeded in creating fluorescent duplexes that can generate any of 16 million colors -- a work that surpasses the previous 256 colors limitation. This very large palette can be used to 'paint' with DNA and to accurately reproduce any digital image on a miniature 2D surface with 24-bit color depth.

Chemistry: Biochemistry Chemistry: Organic Chemistry
Published

Novel hydrogel finds new aptamers, or 'chemical antibodies,' in days      (via sciencedaily.com)     Original source 

A new method uses a hydrogel -- a polymer network that holds its shape and can expand when it takes in a large amount of water -- to retain 'high-affinity,' or well-fitting, aptamers while the rest of the aptamer candidates leave the gel in 60 hours.

Biology: Biochemistry Biology: General Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Environmental: General Geoscience: Geochemistry
Published

Researchers develop organic nanozymes suitable for agricultural use      (via sciencedaily.com)     Original source 

Nanozymes are synthetic materials that mimic the properties of natural enzymes for applications in biomedicine and chemical engineering. They are generally considered too toxic and expensive for use in agriculture and food science. Now, researchers have developed a nanozyme that is organic, non-toxic, environmentally friendly, and cost effective.