Showing 20 articles starting at article 601

< Previous 20 articles        Next 20 articles >

Categories: Chemistry: Organic Chemistry, Space: Cosmology

Return to the site home page

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Chemistry: Biochemistry Chemistry: Organic Chemistry Engineering: Nanotechnology
Published

Novel nanocages for delivery of small interfering RNAs      (via sciencedaily.com)     Original source 

Small interfering RNAs (siRNAs) are novel therapeutics that can be used to treat a wide range of diseases. This has led to a growing demand for selective, efficient, and safe ways of delivering siRNA in cells. Now, in a cooperation between the Universities of Amsterdam and Leiden, researchers have developed dedicated molecular nanocages for siRNA delivery. In a paper just out in the Journal Chem they present nanocages that are easy to prepare and display tuneable siRNA delivery characteristics.

Chemistry: General Chemistry: Organic Chemistry Energy: Alternative Fuels Environmental: General Geoscience: Geochemistry
Published

Using machine learning to find reliable and low-cost solar cells      (via sciencedaily.com)     Original source 

Hybrid perovskites are organic-inorganic molecules that have received a lot of attention over the past 10 years for their potential use in renewable energy. Some are comparable in efficiency to silicon for making solar cells, but they are cheaper to make and lighter, potentially allowing a wide range of applications, including light-emitting devices. However, they tend to degrade way more readily than silicon when exposed to moisture, oxygen, light, heat, and voltage. Researchers used machine learning and high-throughput experiments to identify perovskites with optimal qualities out of the very large field of possible structures.

Biology: Biochemistry Space: Astronomy Space: Astrophysics Space: Cosmology Space: Exploration Space: General Space: Structures and Features Space: The Solar System
Published

Metal-poor stars are more life-friendly      (via sciencedaily.com)     Original source 

A star's chemical composition strongly influences the ultraviolet radiation it emits into space and thus the conditions for the emergence of life in its neighborhood.

Chemistry: Biochemistry Chemistry: Organic Chemistry Chemistry: Thermodynamics Energy: Alternative Fuels Energy: Technology Environmental: General Environmental: Water Geoscience: Environmental Issues
Published

A solar hydrogen system that co-generates heat and oxygen      (via sciencedaily.com)     Original source 

Researchers have built a pilot-scale solar reactor that produces usable heat and oxygen, in addition to generating hydrogen with unprecedented efficiency for its size.

Offbeat: General Offbeat: Space Space: Astronomy Space: Astrophysics Space: Cosmology Space: Exploration Space: General Space: Structures and Features
Published

James Webb Space Telescope images challenge theories of how universe evolved      (via sciencedaily.com)     Original source 

Astronomers find that six of the earliest and most massive galaxy candidates observed by the James Webb Space Telescope so far appear to have converted nearly 100% of their available gas into stars, a finding at odds with the reigning model of cosmology.

Offbeat: General Offbeat: Space Space: Astronomy Space: Astrophysics Space: Cosmology Space: Exploration Space: General Space: Structures and Features
Published

Researchers discover tiny galaxy with big star power using James Webb telescope      (via sciencedaily.com)     Original source 

Using new observations from the James Webb Space Telescope, astronomers looked more than 13 billion years into the past to discover a unique, minuscule galaxy that could help astronomers learn more about galaxies that were present shortly after the Big Bang.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Physics: Optics
Published

Luminous molecules      (via sciencedaily.com)     Original source 

Twisted molecules play an important role in the development of organic light-emitting diodes. A team of chemists has managed to create these compounds with exactly the three-dimensional structure that they wanted. In so doing, they are smoothing the path for new and better light sources.

Offbeat: General Offbeat: Space Space: Astronomy Space: Astrophysics Space: Cosmology Space: Exploration Space: General Space: Structures and Features
Published

New findings that map the universe's cosmic growth support Einstein's theory of gravity      (via sciencedaily.com)     Original source 

Research by the Atacama Cosmology Telescope collaboration has culminated in a groundbreaking new image that reveals the most detailed map of dark matter distributed across a quarter of the entire sky, reaching deep into the cosmos. Findings provide further support to Einstein's theory of general relativity, which has been the foundation of the standard model of cosmology for more than a century, and offers new methods to demystify dark matter.

Offbeat: General Offbeat: Space Space: Astronomy Space: Astrophysics Space: Cosmology Space: Exploration Space: General Space: Structures and Features
Published

Webb reveals never-before-seen details in Cassiopeia A      (via sciencedaily.com)     Original source 

The explosion of a star is a dramatic event, but the remains the star leaves behind can be even more dramatic. A new mid-infrared image from NASA's James Webb Space Telescope provides one stunning example. It shows the supernova remnant Cassiopeia A (Cas A), created by a stellar explosion seen from Earth 340 years ago. Cas A is the youngest known remnant from an exploding, massive star in our galaxy, which makes it a unique opportunity to learn more about how such supernovae occur.

Offbeat: General Offbeat: Space Physics: General Physics: Quantum Physics Space: Astronomy Space: Astrophysics Space: Cosmology Space: Exploration Space: General Space: Structures and Features
Published

How to see the invisible: Using the dark matter distribution to test our cosmological model      (via sciencedaily.com)     Original source 

Astrophysicists have measured a value for the 'clumpiness' of the universe's dark matter (known to cosmologists as 'S8') of 0.776, which does not align with the value derived from the Cosmic Microwave Background, which dates back to the universe's origins. This has intriguing implications for the standard cosmological model.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

Scientists use peroxide to peer into metal oxide reactions      (via sciencedaily.com)     Original source 

Researchers to get a better look at how peroxides on the surface of copper oxide promote the oxidation of hydrogen but inhibit the oxidation of carbon monoxide, allowing them to steer oxidation reactions.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Physics: Optics
Published

Toward tunable molecular switches from organic compounds      (via sciencedaily.com)     Original source 

Newly synthesized organic molecules can be tuned to emit different colors depending on their molecular structures in crystal form.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Engineering: Nanotechnology Mathematics: Modeling Physics: General
Published

New atomic-scale understanding of catalysis could unlock massive energy savings      (via sciencedaily.com)     Original source 

In an advance they consider a breakthrough in computational chemistry research, chemical engineers have developed a model of how catalytic reactions work at the atomic scale. This understanding could allow engineers and chemists to develop more efficient catalysts and tune industrial processes -- potentially with enormous energy savings, given that 90% of the products we encounter in our lives are produced, at least partially, via catalysis.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Technology Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Long-forgotten equation provides new tool for converting carbon dioxide      (via sciencedaily.com)     Original source 

To manage atmospheric carbon dioxide and convert the gas into a useful product, scientists have dusted off an archaic -- now 120 years old -- electrochemical equation.

Offbeat: General Offbeat: Space Space: Astronomy Space: Astrophysics Space: Cosmology Space: Exploration Space: General Space: Structures and Features
Published

Hubble sees possible runaway black hole creating a trail of stars      (via sciencedaily.com)     Original source 

There's an invisible monster on the loose, barreling through intergalactic space so fast that if it were in our solar system, it could travel from Earth to the Moon in 14 minutes. This supermassive black hole, weighing as much as 20 million Suns, has left behind a never-before-seen 200,000-light-year-long 'contrail' of newborn stars, twice the diameter of our Milky Way galaxy. It's likely the result of a rare, bizarre game of galactic billiards among three massive black holes.

Offbeat: General Offbeat: Space Space: Astronomy Space: Astrophysics Space: Cosmology Space: Exploration Space: General Space: Structures and Features
Published

Hubble unexpectedly finds double quasar in distant universe      (via sciencedaily.com)     Original source 

The early universe was a rambunctious place where galaxies often bumped into each other and even merged together. Using NASA's Hubble Space Telescope and other space and ground-based observatories, astronomers investigating these developments have made an unexpected and rare discovery: a pair of gravitationally bound quasars, both blazing away inside two merging galaxies. They existed when the universe was just 3 billion years old.

Chemistry: General Chemistry: Organic Chemistry Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

DMI allows magnon-magnon coupling in hybrid perovskites      (via sciencedaily.com)     Original source 

An international group of researchers has created a mixed magnon state in an organic hybrid perovskite material by utilizing the Dzyaloshinskii--Moriya-Interaction (DMI). The resulting material has potential for processing and storing quantum computing information.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Environmental: General Geoscience: Geochemistry
Published

Scientists use computational modeling to design 'ultrastable' materials      (via sciencedaily.com)     Original source 

Researchers developed a computational approach to predict which metal-organic framework (MOF) structures will be the most stable, and therefore the best candidates for applications such as capturing greenhouse gases.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Geoscience: Geochemistry
Published

Discovery of crucial clue to accelerate development of carbon-neutral porous materials      (via sciencedaily.com)     Original source 

A recent study has provided a library of those various molecular clusters for future metal building blocks of MOFs, and suggested practical synthetic strategies.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Batteries Energy: Technology
Published

Major storage capacity in water-based batteries      (via sciencedaily.com)     Original source 

Chemical engineers have discovered a 1,000% difference in the storage capacity of metal-free, water-based battery electrodes.