Showing 20 articles starting at article 301
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Organic Chemistry, Space: Astrophysics
Published Pushing the boundary on ultralow frequency gravitational waves



A team of physicists has developed a method to detect gravity waves with such low frequencies that they could unlock the secrets behind the early phases of mergers between supermassive black holes, the heaviest objects in the universe.
Published Researchers develop artificial building blocks of life



For the first time, scientists have developed artificial nucleotides, the building blocks of DNA, with several additional properties in the laboratory.
Published Baby quasars: Growing supermassive black holes



The James Webb Space Telescope makes one of the most unexpected findings within its first year of service: A high number of faint little red dots in the distant Universe could change the way we understand the genesis of supermassive black holes.
Published Researchers develop new machine learning method for modeling of chemical reactions



Researchers have used machine learning to create a model that simulates reactive processes in organic materials and conditions.
Published Finding new physics in debris from colliding neutron stars



Neutron star mergers are a treasure trove for new physics signals, with implications for determining the true nature of dark matter, according to physicists.
Published Astronomers spot oldest 'dead' galaxy yet observed



A galaxy that suddenly stopped forming new stars more than 13 billion years ago has been observed by astronomers. Using the James Webb Space Telescope, astronomers have spotted a 'dead' galaxy when the universe was just 700 million years old, the oldest such galaxy ever observed.
Published Universal tool for tracking cell-to-cell interactions



An updated method for directly observing physical interactions between cells, could allow scientists to one day map every possible cell interaction.
Published Discovery tests theory on cooling of white dwarf stars



Open any astronomy textbook to the section on white dwarf stars and you'll likely learn that they are 'dead stars' that continuously cool down over time. Astronomers are challenging this theory after discovering a population of white dwarf stars that stopped cooling for more than eight billion years.
Published New type of nanoparticle makes vaccines more powerful



A type of nanoparticle called a metal organic framework (MOF) could be used to deliver vaccines and act as an adjuvant. Researchers find these particles provoke a strong immune response by activating the innate immune system through cell proteins called toll-like receptors.
Published Key advance toward removing common herbicide from groundwater



Chemists are closing in on a new tool for tackling the global problem of weedkiller-tainted groundwater.
Published Aluminum nanoparticles make tunable green catalysts



A nanotechnology pioneer has uncovered a transformative approach to harnessing the catalytic power of aluminum nanoparticles by annealing them in various gas atmospheres at high temperatures.
Published Using light to precisely control single-molecule devices



Researchers flip the switch at the nanoscale by applying light to induce bonding for single-molecule device switching.
Published Researchers closing in on genetic treatments for hereditary lung disease, vision loss



Researchers who work with tiny drug carriers known as lipid nanoparticles have developed a new type of material capable of reaching the lungs and the eyes, an important step toward genetic therapy for hereditary conditions like cystic fibrosis and inherited vision loss.
Published 'Like a lab in your pocket' -- new test strips raise game in gene-based diagnostics



Biosensing technology developed by engineers has made it possible to create gene test strips that rival conventional lab-based tests in quality.
Published Groundbreaking survey reveals secrets of planet birth around dozens of stars



A team of astronomers has shed new light on the fascinating and complex process of planet formation. The research brings together observations of more than 80 young stars that might have planets forming around them, providing astronomers with a wealth of data and unique insights into how planets arise in different regions of our galaxy.
Published What makes black holes grow and new stars form? Machine learning helps solve the mystery



It takes more than a galaxy merger to make a black hole grow and new stars form: machine learning shows cold gas is needed too to initiate rapid growth -- new research finds.
Published Webb unlocks secrets of one of the most distant galaxies ever seen



Looking deeply into space and time, astronomers have studied the exceptionally luminous galaxy GN-z11, which existed when our 13.8 billion-year-old universe was only about 430 million years old.
Published AI-enabled atomic robotic probe to advance quantum material manufacturing



Scientists have pioneered a new methodology of fabricating carbon-based quantum materials at the atomic scale by integrating scanning probe microscopy techniques and deep neural networks. This breakthrough highlights the potential of implementing artificial intelligence at the sub-angstrom scale for enhanced control over atomic manufacturing, benefiting both fundamental research and future applications.
Published New insights on how galaxies are formed



Astronomers can use supercomputers to simulate the formation of galaxies from the Big Bang 13.8 billion years ago to the present day. But there are a number of sources of error. An international research team has spent a hundred million computer hours over eight years trying to correct these.
Published Ultraviolet radiation from massive stars shapes planetary systems



Up to a certain point, very luminous stars can have a positive effect on the formation of planets, but from that point on the radiation they emit can cause the material in protoplanetary discs to disperse.