Showing 20 articles starting at article 881
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Organic Chemistry, Space: Astrophysics
Published 'Glow-in-the-dark' proteins could help diagnose viral diseases


Despite recent advancements, many highly sensitive diagnostic tests for viral diseases still require complicated techniques to prepare a sample or interpret a result, making them impractical for point-of-care settings or areas with few resources. But now, a team has developed a sensitive method that analyzes viral nucleic acids in as little as 20 minutes and can be completed in one step with 'glow-in-the-dark' proteins.
Published Webb Telescope captures rarely seen prelude to supernova


The rare sight of a Wolf-Rayet star -- among the most luminous, most massive, and most briefly detectable stars known -- was one of the first observations made by NASA's James Webb Space Telescope in June 2022. Webb shows the star, WR 124, in unprecedented detail with its powerful infrared instruments. The star is 15,000 light-years away in the constellation Sagittarius.
Published Spatial patterns in distribution of galaxies


In an unlikely pairing, a chemist and an astrophysicist applied the tools of statistical mechanics to find similarities in spatial patterns across length scales.
Published 3D internal structure of rechargeable batteries revealed


Researchers have pioneered a technique to observe the 3D internal structure of rechargeable batteries. This opens up a wide range of areas for the new technique from energy storage and chemical engineering to biomedical applications.
Published Thermal conductivity of metal organic frameworks


Metal organic frameworks, or MOFs, are kind of like plastic building block toys. The pieces are simple to connect, yet they're capable of building highly sophisticated structures.
Published Scientists identify substance that may have sparked life on Earth


A team of scientists dedicated to pinpointing the primordial origins of metabolism -- a set of core chemical reactions that first powered life on Earth -- has identified part of a protein that could provide scientists clues to detecting planets on the verge of producing life.
Published Customizing catalysts for solid-state reactions


A newly developed molecular catalyst specifically tailored for mechanochemical reaction conditions enables high-efficiency transformations at near room temperature.
Published Researchers find access to new fluorescent materials


Fluorescence is a fascinating natural phenomenon. It is based on the fact that certain materials can absorb light of a certain wavelength and then emit light of a different wavelength. Fluorescent materials play an important role in our everyday lives, for example in modern screens. Due to the high demand for applications, science is constantly striving to produce new and easily accessible molecules with high fluorescence efficiency.
Published Microscopy: Highest resolution in three dimensions


Researchers have developed a super-resolution microscopy method for the rapid differentiation of molecular structures in 3D.
Published New biosensor reveals activity of elusive metal that's essential for life


A new biosensor offers scientists the first dynamic glimpses of manganese, an elusive metal ion that is essential for life.
Published A safe synthesis of hydrogen peroxide inspired by nature


Scientists report the safe synthesis of hydrogen peroxide (H2O2), an oxidizing agent used in multiple industries including semiconductors, using a new rhodium-based catalyst. The catalyst is based on natural enzymes found in extremophile microorganisms, and the reaction meets three chemical ideals for H2O2 production: safe, use of a single vessel, and direct synthesis.
Published ALMA traces history of water in planet formation back to the interstellar medium


Observations of water in the disk forming around protostar V883 Ori have unlocked clues about the formation of comets and planetesimals in our own solar system.
Published The planet that could end life on Earth


A terrestrial planet hovering between Mars and Jupiter would be able to push Earth out of the solar system and wipe out life on this planet, according to a recent experiment.
Published Catalyst purifies herbicide-tainted water and produces hydrogen


Researchers have developed a dual-purpose catalyst that purifies herbicide-tainted water while also producing hydrogen.
Published DNA repair discovery could improve biotechnology


A team of researchers has made a discovery that may have implications for therapeutic gene editing strategies, cancer diagnostics and therapies and other advancements in biotechnology.
Published Resurrected supernova provides missing link


Astronomers have discovered a supernova exhibiting unprecedented rebrightening at millimeter wavelengths, providing an intermediate case between two types of supernovae: those of solitary stars and those in close-binary systems.
Published Ultracool dwarf binary stars break records


Astrophysicists have discovered the tightest ultracool dwarf binary system ever observed. The two stars are so close that it takes them less than one Earth day to revolve around each other. In other words, each star's 'year' lasts just 17 hours.
Published Quantum chemistry: Molecules caught tunneling


Quantum effects can play an important role in chemical reactions. Physicists have now observed a quantum mechanical tunneling reaction in experiments. The observation can also be described exactly in theory. The scientists provide an important reference for this fundamental effect in chemistry. It is the slowest reaction with charged particles ever observed.
Published AI draws most accurate map of star birthplaces in the Galaxy


Scientists identified about 140,000 molecular clouds in the Milky Way Galaxy from large-scale data of carbon monoxide molecules, observed in detail by the Nobeyama 45-m radio telescope. Using artificial intelligence, the researchers estimated the distance of each of these molecular clouds to determine their size and mass, successfully mapping the distribution of the molecular clouds in the Galaxy in the most detailed manner to date.
Published Degrading modified proteins could treat Alzheimer's, other 'undruggable' diseases


Certain diseases, including Alzheimer's, are currently considered 'undruggable' because traditional small molecule drugs can't interfere with the proteins responsible for the illnesses. But a new technique that specifically targets and breaks apart certain proteins -- rather than just interfering with them -- may offer a pathway toward treatment. Researchers have now designed a compound that targets and breaks down a post-translationally modified protein closely associated with Alzheimer's disease.