Showing 20 articles starting at article 221
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Organic Chemistry, Environmental: Ecosystems
Published Arctic melting heavily influenced by little-studied meteorological phenomena



A team of scientists has combined paleoclimatic data from the last 2,000 years with powerful computer modeling and in-the-field research on lake sediments and tree rings to show that an understudied phenomenon, known as atmospheric blocking, has long influenced temperature swings in the Arctic. As temperatures warm due to climate change, atmospheric blocking will help drive ever-wilder weather events. The study focused on the Norwegian Arctic archipelago, Svalbard, at the edge of the Arctic Ocean.
Published Thawing permafrost: Not a climate tipping element, but nevertheless far-reaching impacts



Permafrost soils store large quantities of organic carbon and are often portrayed as a critical tipping element in the Earth system, which, once global warming has reached a certain level, suddenly and globally collapses. Yet this image of a ticking timebomb, one that remains relatively quiet until, at a certain level of warming, it goes off, is a controversial one among the research community. Based on the scientific data currently available, the image is deceptive, as an international team has shown in a recently released study. According to their findings, there is no single global tipping point; rather, there are numerous local and regional ones, which 'tip' at different times, producing cumulative effects and causing the permafrost to thaw in step with climate change.
Published Fresh findings: Earliest evidence of life-bringing freshwater on Earth



New research has found evidence that fresh water on Earth, which is essential for life, appeared about four billion years ago -- five hundred million years earlier than previously thought.
Published Researchers call for return of Sumas Lake following devastating 2021 floods



A new proposal has emerged in response to the November 2021 floods that swept Sumas Prairie in the Fraser Valley, British Columbia, causing mass evacuations and millions in damages. Instead of rebuilding the dykes to manage water flows and prevent future floods, scientists, along with members of the Sumas First Nation and other research partners, suggest an alternative: let Sumas Lake, which was drained in the early 1920s and converted into the farmland known as Sumas Prairie, return to its natural state. This can be done by buying out properties on the lakebed -- a solution that is projected to cost around $1 billion, less than half of the estimated $2.4 billion cost of repairing the dykes and installing a new pump station.
Published Paving the way for hydrogen from algae enzymes



Under certain conditions, some algae are able to produce hydrogen -- a much sought-after green energy source. Its production takes place in the unique catalytic center of the unicellular algae and is only possible if certain cofactors of the relevant proteins are present. Researchers have identified how such a cofactor, the so-called hydrogen cluster, is assembled. Specifically, they describe the previously unexplained role of the enzyme HydF, which is involved in the final steps of assembly.
Published Fjords are effective carbon traps regardless of oxygen levels



The fjords on Sweden's west coast act as effective carbon traps regardless of whether the bottom water is oxygen-rich or not.
Published New coral disease forecasting system



Research has led to a new tool for forecasting coral disease that could help conservationists step in at the right times with key interventions. Ecological forecasts are critical tools for conserving and managing marine ecosystems, but few forecasting systems can account for the wide range of ecological complexities in near-real-time.
Published Scientists develop most sensitive way to observe single molecules



A technical achievement marks a significant advance in the burgeoning field of observing individual molecules without the aid of fluorescent labels. While these labels are useful in many applications, they alter molecules in ways that can obscure how they naturally interact with one another. The new label-free method makes the molecules so easy to detect, it is almost as if they had labels.
Published People are altering decomposition rates in waterways



Humans may be accelerating the rate at which organic matter decomposes in rivers and streams on a global scale, according to a new study. That could pose a threat to biodiversity in waterways around the world and increase the amount of carbon in Earth's atmosphere, potentially exacerbating climate change. The study is the first to combine a global experiment and predictive modeling to illustrate how human impacts to waterways may contribute to the global climate crisis.
Published Historic iceberg surges offer insights on modern climate change



A great armada entered the North Atlantic, launched from the cold shores of North America. But rather than ships off to war, this force was a fleet of icebergs. And the havoc it wrought was to the ocean current itself. The future of the Atlantic circulation will be determined by a tug-o-war between Greenland's decreasing ice flux and its increasing freshwater runoff.
Published New method makes hydrogen from solar power and agricultural waste



Engineers have helped design a new method to make hydrogen gas from water using only solar power and agricultural waste such as manure or husks. The method reduces the energy needed to extract hydrogen from water by 600%, creating new opportunities for sustainable, climate-friendly chemical production.
Published High groundwater depletion risk in South Korea in 2080s



Team utilizes advanced statistical techniques to project the future groundwater depletion risk.
Published Antibiotic pollution disrupts the gut microbiome and blocks memory in aquatic snails



Antibiotics prevent snails from forming new memories by disrupting their gut microbiome -- the community of beneficial bacteria found in their guts.
Published Abandoned farmlands could play a role in fighting climate change: A new study shows exactly where they are



The team used machine learning to map nearly 30 million acres of United States cropland abandoned since the 1980s, creating a tool that could guide decisions about how to balance production of energy and food.
Published Editing without 'cutting': Molecular mechanisms of new gene-editing tool revealed



New research has determined the spatial structure of various processes of a novel gene-editing tool called 'prime editor.' Functional analysis based on these structures also revealed how a 'prime editor' could achieve reverse transcription, synthesizing DNA from RNA, without 'cutting' both strands of the double helix. Clarifying these molecular mechanisms contributes greatly to designing gene-editing tools accurate enough for gene therapy treatments.
Published Researchers create materials with unique combo of stiffness, thermal insulation



Researchers have demonstrated the ability to engineer materials that are both stiff and capable of insulating against heat. This combination of properties is extremely unusual and holds promise for a range of applications, such as the development of new thermal insulation coatings for electronic devices.
Published What makes some plant groups so successful?



Researchers involved in cataloguing the world's plant species are hunting for answers as to what makes some groups of plants so successful. One of their major goals is to predict more accurately which lineages of flowering plants -- some of which are of huge importance to people and to ecosystems -- are at a greater risk from global climate change.
Published Aerosol pollution, greenhouse gases must be reduced simultaneously to keep forest fires in check



If we want cleaner air, fewer forest fires, and less severe climate change, a new study shows we must reduce aerosol pollution and greenhouse gases like carbon dioxide at the same time.
Published Solving the problems of proton-conducting perovskites for next-generation fuel cells



As a newly developed perovskite with a large amount of intrinsic oxygen vacancies, BaSc0.8W0.2O2.8 achieves high proton conduction at low and intermediate temperatures, report scientists. By the donor doping of large W6+, this material can take up more water to increase its proton concentration, as well as reduce the proton trapping through electrostatic repulsion between the dopant and proton. These findings could pave the way to the rational design of novel perovskites for protonic ceramic fuel cells (PCFCs) and electrolysis cells (PCECs).
Published Research to uncover the impact of water use in the Colorado River Basin



Persistent overuse of water and long-term drought has depleted the Colorado River and highlighted the need for a comprehensive understanding of how waters are allocated and used to develop effective management strategies.