Space: Astronomy Space: Astrophysics Space: Exploration Space: General Space: Structures and Features Space: The Solar System
Published

Scientific definition of a planet says it must orbit our sun; A new proposal would change that      (via sciencedaily.com)     Original source 

The International Astronomical Union defines a planet as a celestial body that orbits the sun, is massive enough that gravity has forced it into a spherical shape, and has cleared away other objects near its orbit around the sun. Scientists now recognize the existence of thousands of planets, but the IAU definition applies only to those within our solar system. The new proposed definition specifies that the body may orbit one or more stars, brown dwarfs or stellar remnants and sets mass limits that should apply to planets everywhere.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Microbiology Biology: Molecular Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry Geoscience: Geochemistry
Published

Nanoplastics and 'forever chemicals' disrupt molecular structures, functionality      (via sciencedaily.com)     Original source 

Researchers have made significant inroads in understanding how nanoplastics and per- and polyfluoroalkyl substances (PFAS) -- commonly known as forever chemicals -- disrupt biomolecular structure and function. The work shows that the compounds can alter proteins found in human breast milk and infant formulas -- potentially causing developmental issues downstream.

Offbeat: General Offbeat: Space Space: Exploration Space: General Space: Structures and Features Space: The Solar System
Published

Mars likely had cold and icy past, new study finds      (via sciencedaily.com)     Original source 

The question of whether Mars ever supported life has captivated the imagination of scientists and the public for decades. Central to the discovery is gaining insight into the past climate of Earth's neighbor: was the planet warm and wet, with seas and rivers much like those found on our own planet? Or was it frigid and icy, and therefore potentially less prone to supporting life as we know it? A new study finds evidence to support the latter by identifying similarities between soils found on Mars and those of Canada's Newfoundland, a cold subarctic climate.

Offbeat: General Offbeat: Space Space: Astronomy Space: General Space: Structures and Features Space: The Solar System
Published

The origins of dark comets      (via sciencedaily.com)     Original source 

Up to 60% of near-Earth objects could be dark comets, mysterious asteroids that orbit the sun in our solar system that likely contain or previously contained ice and could have been one route for delivering water to Earth, according to a new study.

Offbeat: General Offbeat: Space Space: Astronomy Space: Astrophysics Space: Exploration Space: General Space: Structures and Features Space: The Solar System
Published

Strong evidence for intermediate-mass black hole in Omega Centauri      (via sciencedaily.com)     Original source 

Most known black holes are either extremely massive, like the supermassive black holes that lie at the cores of large galaxies, or relatively lightweight, with a mass of under 100 times that of the Sun. Intermediate-mass black holes (IMBHs) are scarce, however, and are considered rare 'missing links' in black hole evolution.

Offbeat: General Offbeat: Space Space: Astronomy Space: Astrophysics Space: Exploration Space: General Space: Structures and Features Space: The Solar System
Published

Found with Webb: A potentially habitable icy world      (via sciencedaily.com)     Original source 

A international team of astronomers has made an exciting discovery about the temperate exoplanet LHS 1140 b: it could be a promising 'super-Earth' covered in ice or water.

Environmental: Water Geoscience: Earth Science Geoscience: Geology Space: Exploration Space: General Space: Structures and Features Space: The Solar System
Published

Building materials for water-rich planets in the early solar system      (via sciencedaily.com)     Original source 

Age data for certain classes of meteorite have made it possible to gain new findings on the origin of small water-rich astronomical bodies in the early solar system. These planetesimals continually supplied building materials for planets -- also for the Earth, whose original material contained little water. The Earth received its actual water through planetesimals, which emerged at low temperatures in the outer solar system, as shown by computational models carried out by an international research teach with participation by earth scientists.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

Chemistry inspired by one-pot cooking      (via sciencedaily.com)     Original source 

Is it possible to create a new class of materials from very different substances using the 'one-pot synthesis' approach? Chemists explain how they enable the synthesis of such novel materials.

Offbeat: General Offbeat: Space Space: Astronomy Space: Exploration Space: General Space: Structures and Features Space: The Solar System
Published

Stench of a gas giant? Nearby exoplanet reeks of rotten eggs, and that's a good thing      (via sciencedaily.com)     Original source 

An exoplanet infamous for its deadly weather has been hiding another bizarre feature -- it reeks of rotten eggs, according to a new study of data from the James Webb Space Telescope.

Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry Energy: Alternative Fuels
Published

Hexagonal perovskite oxides: Electrolytes for next-generation protonic ceramic fuel cells      (via sciencedaily.com)     Original source 

Researchers have identified hexagonal perovskite-related oxides as materials with exceptionally high proton conductivity and thermal stability. Their unique crystal structure and large number of oxygen vacancies enable full hydration and high proton diffusion, making these materials ideal candidates as electrolytes for next-generation protonic ceramic fuel cells that can operate at intermediate temperatures without degradation.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Physics: General Physics: Optics
Published

Visualizing short-lived intermediate compounds produced during chemical reactions      (via sciencedaily.com)     Original source 

Immobilizing small synthetic molecules inside protein crystals proves to be a promising avenue for studying intermediate compounds formed during chemical reactions, scientists report. By integrating this method with time-resolved serial femtosecond crystallography, they successfully visualized reaction dynamics and rapid structural changes occurring within reaction centers immobilized inside protein crystals. This innovative strategy holds significant potential for the intelligent design of drugs, catalysts, and functional materials.

Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry
Published

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications      (via sciencedaily.com)     Original source 

A team has discovered that the new organic molecule thienyl diketone exhibits high-efficiency phosphorescence, achieving a rate over ten times faster than traditional materials. This breakthrough provides new guidelines for developing rare metal-free organic phosphorescent materials, promising advancements in applications like organic EL displays, lighting, and cancer diagnostics.

Offbeat: General Offbeat: Space Space: Astronomy Space: Exploration Space: General Space: The Solar System
Published

Moon 'swirls' could be magnetized by unseen magmas      (via sciencedaily.com)     Original source 

Mysterious, light-colored swirls on Moon's surface could be rocks magnetized by magma activity underground, laboratory experiments confirm.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

Chemists synthesize an improved building block for medicines      (via sciencedaily.com)     Original source 

Research could help drug developers improve the safety profiles of medications and reduce side effects.

Computer Science: General Mathematics: Modeling Physics: General Space: Astrophysics Space: Exploration Space: General Space: The Solar System
Published

Machine learning could aid efforts to answer long-standing astrophysical questions      (via sciencedaily.com)     Original source 

Physicists have developed a computer program incorporating machine learning that could help identify blobs of plasma in outer space known as plasmoids. In a novel twist, the program has been trained using simulated data.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Physics: Optics
Published

Using visible light to make pharmaceutical building blocks      (via sciencedaily.com)     Original source 

Chemists have discovered a way to use visible light to synthesize a class of compounds particularly well suited for use in pharmaceuticals. The class of compounds, called azetidines, had been previously identified as a good candidate to build therapeutic drugs, but the compounds are difficult to produce in chemical reactions. Now, a team has developed a method to produce a specific class of azetidines called monocyclic azetidines using visible light and a photocatalyst.

Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geochemistry Geoscience: Geology Offbeat: Earth and Climate Offbeat: General Offbeat: Paleontology and Archeology Offbeat: Space Space: Exploration Space: General Space: The Solar System
Published

Organic material from Mars reveals the likely origin of life's building blocks      (via sciencedaily.com)     Original source 

Two samples from Mars together deliver clear evidence of the origin of Martian organic material. The study presents solid evidence for a prediction made over a decade ago that could be key to understanding how organic molecules, the foundation of life, were first formed here on Earth.