Showing 20 articles starting at article 541
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Organic Chemistry, Environmental: Wildfires
Published Imaging the proton with neutrinos


The interactions of the quarks and gluons that make up protons and neutrons are so strong that the structure of protons and neutrons is difficult to calculate from theory and must be instead measured experimentally. Neutrino experiments use targets that are nuclei made of many protons and neutrons bound together. This complicates interpreting those measurements to infer proton structure. By scattering neutrinos from the protons that are the nuclei of hydrogen atoms in the MINERvA detector, scientists have provided the first measurements of this structure with neutrinos using unbound protons.
Published Molecular teamwork makes the organic dream work


Molecular engineers have triggered a domino-like structural transition in an organic semiconductor. The energy- and time-saving phenomenon may enhance the performance of smartwatches, solar cells, and other organic electronics.
Published Bushfire safe rooms may save lives


Researchers have built and tested a bushfire safe room that exceeds current Australian standards and could keep people alive or protect valuables when evacuation is no longer an option.
Published 'Fishing' for biomarkers


Researchers have devised a tiny, nano-sized sensor capable of detecting protein biomarkers in a sample at single-molecule precision. Fittingly coined as 'hook and bait,' a tiny protein binder fuses to a small hole created in the membrane of a cell -- known as a nanopore -- which allows ionic solution to flow through it. When the sensor recognizes a targeted molecule, the ionic flow changes. This change in flow serves as the signal from the sensor that the biomarker has been found.
Published Can synthetic polymers replace the body's natural proteins?


Scientists developing new biomaterials often try to mimic the body's natural proteins, but a chemist shows that simpler polymers -- based on a handful of plastic building blocks -- also work well. Using AI, her team was able to design polymer mixtures that replicate simple protein functions within biological fluids. The random heteropolymers dissolve and stabilize proteins and can support cells' normal protein-making machinery. The technique could speed the design of materials for biomedical applications.
Published Protein engineers navigate toward more targeted therapeutics


Researchers uncovered the role of the third intracellular loop in the G protein-coupled receptors' signaling mechanism, which could lead to a more targeted approach to drug discovery and a paradigm shift for new therapeutics.
Published Nano cut-and-sew: New method for chemically tailoring layered nanomaterials could open pathways to designing 2D materials on demand


A new process that lets scientists chemically cut apart and stitch together nanoscopic layers of two-dimensional materials -- like a tailor altering a suit -- could be just the tool for designing the technology of a sustainable energy future. Researchers have developed a method for structurally splitting, editing and reconstituting layered materials, called MAX phases and MXenes, with the potential of producing new materials with very unusual compositions and exceptional properties.
Published Modelling superfast processes in organic solar cell material


In organic solar cells, carbon-based polymers convert light into charges that are passed to an acceptor. Scientists have now calculated how this happens by combining molecular dynamics simulations with quantum calculations and have provided theoretical insights to interpret experimental data.
Published Major advance in super-resolution fluorescence microscopy


Pushing the MINFLUX technique to higher spatial and temporal precision allows protein dynamics to be observed under physiological conditions.
Published Filming proteins in motion


Proteins are the heavy-lifters of biochemistry. These beefy molecules act as building blocks, receptors, processors, couriers and catalysts. Naturally, scientists have devoted a lot of research to understanding and manipulating proteins.
Published Researchers control the degree of twist in nanostructured particles


Micron-sized 'bow ties,' self-assembled from nanoparticles, form a variety of different curling shapes that can be precisely controlled, a research team has shown.
Published Making sense of scents: Deciphering our sense of smell


Breaking a longstanding impasse in our understanding of olfaction, scientists have created the first molecular-level, 3D picture of how an odor molecule activates a human odorant receptor, a crucial step in deciphering the sense of smell.
Published 'Glow-in-the-dark' proteins could help diagnose viral diseases


Despite recent advancements, many highly sensitive diagnostic tests for viral diseases still require complicated techniques to prepare a sample or interpret a result, making them impractical for point-of-care settings or areas with few resources. But now, a team has developed a sensitive method that analyzes viral nucleic acids in as little as 20 minutes and can be completed in one step with 'glow-in-the-dark' proteins.
Published New model provides improved air-quality predictions in fire-prone areas


Globally, wildfires are becoming more frequent and destructive, generating a significant amount of smoke that can be transported thousands of miles, driving the need for more accurate air pollution forecasts. Researchers have now developed a deep learning model that provides improved predictions of air quality in wildfire-prone areas and can differentiate between wildfires and non-wildfires.
Published A mechanistic and probabilistic method for predicting wildfires


In the event of dry weather and high winds, power system-ignited incidents are more likely to develop into wildfires. The risk is greater if vegetation is nearby. A new study provides the methodology for predicting at what point during a high wind storm, powerline ignition is likely.
Published 3D internal structure of rechargeable batteries revealed


Researchers have pioneered a technique to observe the 3D internal structure of rechargeable batteries. This opens up a wide range of areas for the new technique from energy storage and chemical engineering to biomedical applications.
Published Thermal conductivity of metal organic frameworks


Metal organic frameworks, or MOFs, are kind of like plastic building block toys. The pieces are simple to connect, yet they're capable of building highly sophisticated structures.
Published Scientists identify substance that may have sparked life on Earth


A team of scientists dedicated to pinpointing the primordial origins of metabolism -- a set of core chemical reactions that first powered life on Earth -- has identified part of a protein that could provide scientists clues to detecting planets on the verge of producing life.
Published Customizing catalysts for solid-state reactions


A newly developed molecular catalyst specifically tailored for mechanochemical reaction conditions enables high-efficiency transformations at near room temperature.
Published Researchers find access to new fluorescent materials


Fluorescence is a fascinating natural phenomenon. It is based on the fact that certain materials can absorb light of a certain wavelength and then emit light of a different wavelength. Fluorescent materials play an important role in our everyday lives, for example in modern screens. Due to the high demand for applications, science is constantly striving to produce new and easily accessible molecules with high fluorescence efficiency.