Showing 20 articles starting at article 141
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Organic Chemistry, Geoscience: Earthquakes
Published Caterbot? Robatapillar? It crawls with ease through loops and bends



Engineers created a catapillar-shaped robot that splits into segments and reassembles, hauls cargo, and crawls through twisting courses.
Published High-pressure spectroscopy: Why 3,000 bars are needed to take a comprehensive look at a protein



Why 3,000 bars are needed to take a comprehensive look at a protein: Researchers present a new high-pressure spectroscopy method to unravel the properties of proteins' native structures.
Published New approach in the synthesis of complex natural substances



Many natural substances possess interesting characteristics, and can form the basis of new active compounds in medicine. Terpenes, for example, are a group of substances, some of which are already used in therapies against cancer, malaria or epilepsy. They are found as fragrances in cosmetics or as flavorings in food, and form the basis of new medications: Terpenes are natural substances that occur in plants, insects and sea sponges. They are difficult to produce synthetically. However, chemists are now introducing a new method of synthesis.
Published Researchers create new chemical compound to solve 120-year-old problem



Chemists have created a highly reactive chemical compound that has eluded scientists for more than 120 years. The discovery could lead to new drug treatments, safer agricultural products, and better electronics.
Published Do earthquake hazard maps predict higher shaking than actually occurred?



A research team studied earthquake hazard maps from five countries and found that all the maps seemed to overpredict the historically observed earthquake shaking intensities. In analyzing the possible causes, the researchers discovered the issue was with the conversion equations used in comparing the maps predicting future quakes with actual shaking data, rather than systemic problems with the hazard modeling itself.
Published Scientists solve chemical mystery at the interface of biology and technology



Organic electrochemical transistors (OECTs) allow current to flow in devices like implantable biosensors. But scientists long knew about a quirk of OECTs that no one could explain: When an OECT is switched on, there is a lag before current reaches the desired operational level. When switched off, there is no lag. Current drops immediately. Researchers report that they have discovered the reason for this activation lag, and in the process are paving the way to custom-tailored OECTs for a growing list of applications in biosensing, brain-inspired computation and beyond.
Published Research on RNA editing illuminates possible lifesaving treatments for genetic diseases



The research explores how CRISPR can be used to edit RNA.
Published When does a conductor not conduct?



A new study uncovers a switchable, atomically-thin metal-organic material that could be used in future low-energy electronic technologies. The study shows that electron interactions in this material create an unusual electrically-insulating phase in which electrons are 'frozen'. By reducing the population of electrons, the authors are able to unfreeze the remaining electrons, allowing for controlled transitions between insulating and electrically-conductive phases: the key to the on-off binary operations of classical computing.
Published Getting dynamic information from static snapshots



Researchers have created TopicVelo, a powerful new method of using the static snapshots from scRNA-seq to study how cells and genes change over time. This will help researchers better study how embryos develop, cells differentiate, cancers form, and the immune system reacts.
Published A shortcut for drug discovery



For most human proteins, there are no small molecules known to bind them chemically (so called 'ligands'). Ligands frequently represent important starting points for drug development but this knowledge gap critically hampers the development of novel medicines. Researchers at CeMM, in a collaboration with Pfizer, have now leveraged and scaled a method to measure the binding activity of hundreds of small molecules against thousands of human proteins. This large-scale study revealed tens of thousands of ligand-protein interactions that can now be explored for the development of chemical tools and therapeutics. Moreover, powered by machine learning and artificial intelligence, it allows unbiased predictions of how small molecules interact with all proteins present in living human cells. These groundbreaking results have been published in the journal Science (DOI: 10.1126/science.adk5864), and all generated data and models are freely available for the scientific community.
Published Nanomaterial that mimics proteins could be basis for new neurodegenerative disease treatments



A newly developed nanomaterial that mimics the behavior of proteins could be an effective tool for treating Alzheimer's and other neurodegenerative diseases. The nanomaterial alters the interaction between two key proteins in brain cells -- with a potentially powerful therapeutic effect.
Published The longer spilled oil lingers in freshwater, the more persistent compounds it produces



Oil is an important natural resource for many industries, but it can lead to serious environmental damage when accidentally spilled. While large oil spills are highly publicized, every year there are many smaller-scale spills into lakes, rivers and oceans. The longer that oil remains in freshwater, the more chemical changes it undergoes, creating products that can persist in the environment.
Published The secret to saving old books could be gluten-free glues



'Bookworm' is a cute thing to call a voracious reader, but actual bookworms -- as well as microorganisms and time -- break down the flour pastes commonly used to keep old publications in one piece. Now, researchers have analyzed the proteins in wheat-based glues applied in historic bookbinding to provide insights on their adhesiveness and how they degrade. This information could help conservators restore and preserve treasured tomes for future generations.
Published Biophysics: Testing how well biomarkers work



Researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy.
Published A chemical mystery solved -- the reaction explaining large carbon sinks



A mystery that has puzzled the scientific community for over 50 years has finally been solved. A team has discovered that a certain type of chemical reaction can explain why organic matter found in rivers and lakes is so resistant to degradation.
Published Researchers create artificial cells that act like living cells



Researchers describe the steps they took to manipulate DNA and proteins -- essential building blocks of life -- to create cells that look and act like cells from the body. This accomplishment, a first in the field, has implications for efforts in regenerative medicine, drug delivery systems and diagnostic tools.
Published New copper-catalyzed C-H activation strategy



Inspired by what human liver enzymes can do, chemists have developed a new set of copper-catalyzed organic synthesis reactions for building and modifying pharmaceuticals and other molecules. The new reactions are expected to be widely used in drug discovery and optimization, as well as in other chemistry-based industries.
Published Light show in living cells



Observing proteins precisely within cells is extremely important for many branches of research but has been a significant technical challenge -- especially in living cells, as the required fluorescent labeling had to be individually attached to each protein. The research group has now overcome this hurdle: With a method called 'vpCells,' it is possible to label many proteins simultaneously, using five different fluorescent colors.
Published Scientists trigger mini-earthquakes in the lab



Earthquakes and landslides are famously difficult to predict and prepare for. By studying a miniature version of the ground in the lab, scientists have demonstrated how these events can be triggered by a small external shock wave. Bring a flotation device: it involves the ground briefly turning into a liquid!
Published From defects to order: Spontaneously emerging crystal arrangements in perovskite halides



A new hybrid layered perovskite featuring elusive spontaneous defect ordering has been found, report scientists. By introducing specific concentrations of thiocyanate ions into FAPbI3 (FA = formamidinium), they observed that ordered columnar defects appeared in the stacked crystalline layers, taking up one-third of the lattice space. These findings could pave the way to an innovative strategy for adjusting the properties of hybrid perovskites, leading to practical advances in optoelectronics and energy generation.