Showing 20 articles starting at article 761
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Organic Chemistry, Geoscience: Severe Weather
Published Scientists use computational modeling to design 'ultrastable' materials



Researchers developed a computational approach to predict which metal-organic framework (MOF) structures will be the most stable, and therefore the best candidates for applications such as capturing greenhouse gases.
Published Discovery of crucial clue to accelerate development of carbon-neutral porous materials



A recent study has provided a library of those various molecular clusters for future metal building blocks of MOFs, and suggested practical synthetic strategies.
Published Major storage capacity in water-based batteries



Chemical engineers have discovered a 1,000% difference in the storage capacity of metal-free, water-based battery electrodes.
Published Strong ultralight material could aid energy storage, carbon capture



Materials scientists showed that fine-tuning interlayer interactions in a class of 2D polymers can determine the materials' loss or retention of desirable mechanical properties in multilayer or bulk form.
Published Plastic transistor amplifies biochemical sensing signal



New transistor technology boosts the body's electrochemical signals by 1,000 times, enabling diagnostic and disease-monitoring implants.
Published Hope for salamanders? Study recalibrates climate change effects


For tiny salamanders squirming skin-to-soil, big-picture weather patterns may seem as far away as outer space. But for decades, scientists have mostly relied on free-air temperature data at large spatial scales to predict future salamander distributions under climate change. The outlook was dire for the mini ecosystem engineers, suggesting near elimination of habitat in crucial areas.
Published New nanoparticles can perform gene-editing in the lungs



A new type of nanoparticle can be administered to the lungs, where it can deliver messenger RNA encoding useful proteins. Researchers hope to use them to develop new treatments for cystic fibrosis and other lung diseases.
Published Why are forests turning brown in summer?


European forests are increasingly turning brown in the course of hot, dry summers. In the scorching summer of 2022, Europe experienced more trees turning brown than ever, with 37% of temperate and Mediterranean forest regions affected. In the three-year meteorological history of low-?greenness events, characteristic weather signals can be found as precursors of the events.
Published AI predicts enzyme function better than leading tools



A new artificial intelligence tool can predict the functions of enzymes based on their amino acid sequences, even when the enzymes are unstudied or poorly understood. Researchers said the AI tool, dubbed CLEAN, outperforms the leading state-of-the-art tools in accuracy, reliability and sensitivity. Better understanding of enzymes and their functions would be a boon for research in genomics, chemistry, industrial materials, medicine, pharmaceuticals and more.
Published AI could set a new bar for designing hurricane-resistant buildings


Being able to withstand hurricane-force winds is the key to a long life for many buildings on the Eastern Seaboard and Gulf Coast of the U.S. Determining the right level of winds to design for is tricky business, but support from artificial intelligence may offer a simple solution.
Published Mimicking biological enzymes may be key to hydrogen fuel production


An ancient biological enzyme known as nickel-iron hydrogenase may play a key role in producing hydrogen for a renewables-based energy economy, researchers said. Careful study of the enzyme has led chemists to design a synthetic molecule that mimics the hydrogen gas-producing chemical reaction performed by the enzyme.
Published Chemists design new molecule, with oxygen as the star of the show


Chemists have achieved a new feat in the realm of chemical design and synthesis: They've helped create the first example of a synthetic molecule, with an asymmetric oxygen atom as its centerpiece, that remains stable and nonreactive -- despite this type of molecule's tendency in nature to be touchy and short-lived. What makes this feat unique is that the new molecule is chiral, which means it has a non-superimposable mirror image.
Published Machine learning model helps forecasters improve confidence in storm prediction


When severe weather is brewing and life-threatening hazards like heavy rain, hail or tornadoes are possible, advance warning and accurate predictions are of utmost importance. Weather researchers have given storm forecasters a powerful new tool to improve confidence in their forecasts and potentially save lives. Over the last several years, Russ Schumacher, professor in the Department of Atmospheric Science and Colorado State Climatologist, has led a team developing a sophisticated machine learning model for advancing skillful prediction of hazardous weather across the continental United States. First trained on historical records of excessive rainfall, the model is now smart enough to make accurate predictions of events like tornadoes and hail four to eight days in advance -- the crucial sweet spot for forecasters to get information out to the public so they can prepare. The model is called CSU-MLP, or Colorado State University-Machine Learning Probabilities.
Published Revolutionary battery technology to boost EV range 10-fold or more


A team develops layering-charged, polymer-based stable high-capacity anode material.
Published Modern origami method creates glass shapes by folding



The ancient art of origami is well known for transforming sheets of paper and other foldable materials into complex 3D shapes. But now, chemical engineers have extended the centuries-old practice to produce intricate shapes made of glass or other hard materials. Their thoroughly modern method, which can be combined with 3D printing, could have applications ranging from sculpture to catalysis and beyond.
Published SMART warnings could protect communities at risk from flooding


Engaging communities in developing a real-time early warning system could help to reduce the often-devastating impact of flooding on people and property -- particularly in mountainous regions where extreme water events are a 'wicked' problem, a new study reveals.
Published Biomolecules: Trying nanometer measurement for size



As part of a comparative international study, researchers have successfully tested and validated a method of investigating dynamic protein structures.
Published Probe where the protons go to develop better fuel cells



Researchers have uncovered the chemical inner-workings of an electrolyte they developed for a new generation of solid oxide fuel cells. To uncover the location of the proton-introduction reaction, the team studied extensively the hydration reaction of their scandium-substituted barium zirconate perovskite through a combination of synchrotron radiation analysis, large-scale simulations, machine learning, and thermogravimetric analysis. The new data has the potential to accelerate the development of more efficient fuel cells.
Published Team designs molecule to disrupt SARS-CoV-2 infection


A team of scientists designed a molecule that disrupts the infection mechanism of the SARS-CoV-2 coronavirus and could be used to develop new treatments for COVID-19 and other viral diseases.
Published Looking from different perspectives! Proper electronic structure of near-infrared absorbing functional dyes discovered


A research group has discovered that near-infrared absorbing dyes, which had previously been considered to have closed-shell electronic structures, have an intermediate electronic structure, between closed- and open-shell structures. They also found that as the wavelength of near-infrared light that can be absorbed becomes longer the contribution of open-shell forms increases within the dye. These newly discovered characteristics are expected to be utilized to develop new near-infrared absorbing dyes that can absorb longer wavelength near-infrared light.