Chemistry: General Chemistry: Organic Chemistry
Published

Degrading modified proteins could treat Alzheimer's, other 'undruggable' diseases      (via sciencedaily.com) 

Certain diseases, including Alzheimer's, are currently considered 'undruggable' because traditional small molecule drugs can't interfere with the proteins responsible for the illnesses. But a new technique that specifically targets and breaks apart certain proteins -- rather than just interfering with them -- may offer a pathway toward treatment. Researchers have now designed a compound that targets and breaks down a post-translationally modified protein closely associated with Alzheimer's disease.

Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Engineering: Nanotechnology
Published

New purification method could make protein drugs cheaper      (via sciencedaily.com)     Original source 

Engineers devised a way to purify protein drugs during manufacturing. Their approach, which uses nanoparticles to rapidly crystallize proteins, could help make protein drugs more affordable and accessible, especially in developing countries.

Geoscience: Severe Weather Mathematics: Modeling
Published

How to predict city traffic      (via sciencedaily.com) 

A new machine learning model can predict traffic activity in different zones of cities. To do so, a researcher used data from a main car-sharing company in Italy as a proxy for overall city traffic. Understanding how different urban zones interact can help avoid traffic jams, for example, and enable targeted responses of policy makers -- such as local expansion of public transportation.

Geoscience: Severe Weather
Published

One is bad enough: climate change raises the threat of back-to-back hurricanes      (via sciencedaily.com) 

Driven by a combination of rising sea levels and climate change, destructive hurricanes and tropical storms could become far more likely to hit coastal areas in quick succession, researchers found. In some areas such double hits could occur as frequently as once every 3 years.

Chemistry: Organic Chemistry
Published

New hydrogel stem cell treatment repairs injured brain tissue in mice      (via sciencedaily.com) 

A new hybrid hydrogel that safely delivers stem cells to brain injury sites in mice has been developed. This solves a major challenge -- keeping stem cells alive for long enough to evolve into the cells required to create new tissue after insertion into a damaged part of the body.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Geoscience: Environmental Issues
Published

New superacid converts harmful compounds into sustainable chemicals      (via sciencedaily.com) 

Researchers have succeeded in producing very special catalysts, known as 'Lewis superacids', which can be used to break strong chemical bonds and speed up reactions. The production of these substances has, until now, proven extremely difficult. The chemists' discovery enables non-biodegradable fluorinated hydrocarbons, similar to Teflon, and possibly even climate-damaging greenhouse gases, such as sulphur hexafluoride, to be converted back into sustainable chemicals.

Biology: Marine Ecology: Animals Ecology: Sea Life Environmental: Ecosystems Geoscience: Environmental Issues Geoscience: Severe Weather
Published

Human-wildlife conflicts rising worldwide with climate change      (via sciencedaily.com) 

Scientists reveal that a warming world is increasing human-wildlife conflicts globally. They show that climate shifts can drive conflicts by altering animal habitats, the timing of events, wildlife behaviors and resource availability. It also showed that people are changing their behaviors and locations in response to climate change in ways that increase conflicts.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Engineering: Nanotechnology
Published

Chaos on the nanometer scale      (via sciencedaily.com) 

Chaotic behavior is typically known from large systems: for example, from weather, from asteroids in space that are simultaneously attracted by several large celestial bodies, or from swinging pendulums that are coupled together. On the atomic scale, however, one does normally not encounter chaos -- other effects predominate. Now scientists have been able to detect clear indications of chaos on the nanometer scale -- in chemical reactions on tiny rhodium crystals.

Geoscience: Environmental Issues Geoscience: Severe Weather Paleontology: Climate Paleontology: Fossils Paleontology: General
Published

Clues about the Northeast's past and future climate from plant fossils      (via sciencedaily.com) 

A team of researchers is working to understand the details of the climate for the eastern portion of the United States from the Miocene, which unfortunately is a blank spot on paleo-climate maps. New findings suggest the future climate will be very close to the warmer, wetter, and more homogeneous climate similar to conditions experienced 5 million years ago.

Chemistry: General Chemistry: Organic Chemistry Geoscience: Environmental Issues
Published

Research captures and separates important toxic air pollutant      (via sciencedaily.com) 

A series of new stable, porous materials that capture and separate benzene have been developed.

Chemistry: General Chemistry: Organic Chemistry
Published

Electrodes grown in the brain -- paving the way for future therapies for neurological disorders      (via sciencedaily.com) 

The boundaries between biology and technology are becoming blurred. Researchers have now successfully grown electrodes in living tissue using the body's molecules as triggers. The result paves the way for the formation of fully integrated electronic circuits in living organisms.

Chemistry: General Chemistry: Organic Chemistry Geoscience: Environmental Issues
Published

Novel air filter captures wide variety of pollutants      (via sciencedaily.com)     Original source 

An air filter made out of corn protein instead of petroleum products can concurrently capture small particulates as well as toxic chemicals like formaldehyde that current air filters can't. The research could lead to better air purifiers, particularly in regions of the world that suffer from very poor air quality. The more environmentally friendly air filter was able to simultaneously capture 99.5% of small particulate matter, similar to commercial HEPA filters, and 87% of formaldehyde, which is higher than specially designed air filters for those types of toxics.

Chemistry: Organic Chemistry Computer Science: General Computer Science: Quantum Computers Mathematics: General Mathematics: Modeling Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Theory can sort order from chaos in complex quantum systems      (via sciencedaily.com) 

Theoretical chemists have developed a theory that can predict the threshold at which quantum dynamics switches from 'orderly' to 'random,' as shown through research using large-scale computations on photosynthesis models.

Geoscience: Severe Weather Space: Exploration Space: General Space: The Solar System
Published

Why do Earth's hemispheres look equally bright when viewed from space?      (via sciencedaily.com) 

When seen from space, Earth's hemispheres -- northern and southern -- appear equally bright. For years, the brightness symmetry between hemispheres remained a mystery. In a new study, researchers reveal a strong correlation between storm intensity, cloudiness and the solar energy reflection rate in each hemisphere. They offer a solution to the mystery, alongside an assessment of how climate change might alter the reflection rate in the future.

Chemistry: Organic Chemistry
Published

A human interactome to prioritize drug discovery      (via sciencedaily.com) 

Researchers create a network of interacting proteins -- or interactome -- to aid drug discovery.

Chemistry: Organic Chemistry
Published

A molecular machine's secret weapon exposed      (via sciencedaily.com) 

RNAs can wreak havoc on cells if they aren't removed at the right time. Dis3L2 is a molecular 'machine' that untangles and chews up RNAs, but scientists have been unable to explain how. Biochemists have now pieced together the answer. By shape-shifting, the machine unsheathes a lethal wedge that pries open and chews up RNA molecules, a behavior previously unseen.

Biology: Microbiology Chemistry: Organic Chemistry Engineering: Nanotechnology Geoscience: Environmental Issues
Published

'Electronic nose' built with sustainably sourced microbial nanowires that could revolutionize health monitoring      (via sciencedaily.com) 

Scientists recently announced the invention of a nanowire 10,000 times thinner than a human hair that can be cheaply grown by common bacteria and tuned to 'smell' a vast array of chemical tracers -- including those given off by people afflicted with a wide range of medical conditions, such as asthma and kidney disease. Thousands of these specially tuned wires, each sniffing out a different chemical, can be layered onto tiny, wearable sensors, allowing healthcare providers an unprecedented tool for monitoring potential health complications. Since these wires are grown by bacteria, they are organic, biodegradable and far greener than any inorganic nanowire.

Chemistry: Organic Chemistry Physics: Optics
Published

Artificial intelligence conjures proteins that speed up chemical reactions      (via sciencedaily.com) 

Scientists have used machine learning to create brand-new enzymes, which are proteins that accelerate chemical reactions. This is an important step in the field of protein design as new enzymes could have many uses across medicine and industrial manufacturing. The research team devised deep-learning, artificial intelligence algorithms that created light-emitting enzymes called luciferases. Laboratory testing confirmed that the new enzymes can recognize specific chemicals and emit light very efficiently.

Chemistry: Organic Chemistry Engineering: Nanotechnology
Published

Nanofluidic devices offer solutions for studying single molecule chemical reactions      (via sciencedaily.com) 

Researchers have developed principles and technologies of nanofluidic devices to freely manipulate nanomaterials, biomaterials, and molecules at the single-molecule level using fundamental technologies such as nanofluidic processing, functional integration, and fluidic control and measurement, which has pioneered the way to integrate various fields under nanofluidics. To elucidate the single molecule dynamics of chemical reactions in solution, using their unique nanofluidic devices, they outlined how they propose to solve problems such as precisely manipulating small molecules in solution and how to investigate extremely quick reactions, that only take nano- to picoseconds.