Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

BESSY II: Molecular orbitals determine stability      (via sciencedaily.com)     Original source 

Carboxylic acid dianions (fumarate, maleate and succinate) play a role in coordination chemistry and to some extent also in the biochemistry of body cells. A team has now analyzed their electronic structures using RIXS in combination with DFT simulations. The results provide information not only on electronic structures but also on the relative stability of these molecules which can influence an industry's choice of carboxylate dianions, optimizing both the stability and geometry of coordination polymers.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Batteries
Published

Chemists decipher reaction process that could improve lithium-sulfur batteries      (via sciencedaily.com)     Original source 

Lithium-sulfur batteries have exceptional theoretical capacity and performance in combination with an element in abundant supply. But the intricate reaction mechanism, particularly during discharge, has been challenging to solve. Researchers have identified the key pathways to a complex sulfur reduction reaction that leads to energy loss and reduced battery life span. The study's findings establish the whole reaction network for the first time and offer insight into electrocatalyst design for improved batteries.

Chemistry: Biochemistry Chemistry: Organic Chemistry Energy: Alternative Fuels Energy: Batteries Energy: Fossil Fuels Environmental: General Geoscience: Environmental Issues
Published

Improving fuel cell durability with fatigue-resistant membranes      (via sciencedaily.com)     Original source 

In hydrogen fuel cells, electrolyte membranes frequently undergo deformation and develop cracks during operation. A research team has recently introduced a fatigue-resistant polymer electrolyte membrane for hydrogen fuel cells, employing an interpenetrating network of Nafion (a plastic electrolyte) and perfluoropolyether (a rubbery polymer). This innovation will not only improve fuel cell vehicles but also promises advancements in diverse technologies beyond transportation, spanning applications from drones to desalination filters and backup power sources.

Chemistry: Biochemistry Chemistry: Organic Chemistry Engineering: Graphene Engineering: Nanotechnology Environmental: Water
Published

Ultra-sensitive lead detector could significantly improve water quality monitoring      (via sciencedaily.com)     Original source 

Engineers have developed an ultra-sensitive sensor made with graphene that can detect extraordinarily low concentrations of lead ions in water. The device achieves a record limit of detection of lead down to the femtomolar range, which is one million times more sensitive than previous technologies.

Chemistry: General Chemistry: Organic Chemistry Engineering: Nanotechnology
Published

Edge-to-edge assembly technique for 2D nanosheets      (via sciencedaily.com)     Original source 

A research team develops edge-to-edge assembly technique for 2D nanosheets.

Chemistry: General Chemistry: Organic Chemistry Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Intensifying the production of high-value compounds from industrial waste      (via sciencedaily.com)     Original source 

New research demonstrates how glycerol carbonate, a biosourced industrial additive, can be produced in record time using CO2 and a by-product of the cooking oil recycling industry. The process relies on a hybrid approach combining fundamental physical organic chemistry and applied flow process technology. Two industrial wastes are thus converted into glycerol carbonate, a biosourced rising star with high added-value.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Chemistry: Biochemistry Chemistry: Organic Chemistry
Published

Groundbreaking genome editing tools unlock new possibilities for precision medicine      (via sciencedaily.com)     Original source 

A team of researchers has achieved a major breakthrough in genome editing technology. They've developed a cutting-edge method that combines the power of designer-recombinases with programmable DNA-binding domains to create precise and adaptable genome editing tools.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Engineering: Nanotechnology Physics: General Physics: Quantum Computing
Published

Small yet mighty: Showcasing precision nanocluster formation with molecular traps      (via sciencedaily.com)     Original source 

Nanoclusters (NCs) of transition metals like cobalt or nickel have widespread applications in drug delivery and water purification, with smaller NCs exhibiting improved functionalities. Downsizing NCs is, however, usually challenging. Now, scientists have demonstrated functional NC formation with atomic-scale precision. They successfully grew cobalt NCs on flat copper surfaces using molecular arrays as traps. This breakthrough paves the way for advancements like single-atom catalysis and spintronics miniaturization.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Engineering: Nanotechnology
Published

High-efficiency carbon dioxide electroreduction system reduces our carbon footprint and progressing carbon neutrality goals      (via sciencedaily.com)     Original source 

Global warming continues to pose a threat to human society and the ecological systems, and carbon dioxide accounts for the largest proportion of the greenhouse gases that dominate climate warming. To combat climate change and move towards the goal of carbon neutrality, researchers have developed a durable, highly selective and energy-efficient carbon dioxide (CO2) electroreduction system that can convert CO2 into ethylene for industrial purposes to provide an effective solution for reducing CO2 emissions.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry Ecology: Endangered Species Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

New study unveils how plants control the production of reactive oxygen species      (via sciencedaily.com)     Original source 

Reactive oxygen species (ROS), though generally regarded as toxic byproducts of biological processes, serve many important functions in plants. However, the precise mechanism that plants use to regulate the production of ROS remains elusive. In a recent study, researchers clarified how an important ROS-generating enzyme is activated, revealing mechanisms likely conserved across all land plants. Their findings could pave the way for breakthroughs in agricultural and environmental remediation tools.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Alternative Fuels
Published

New sustainable method for creating organic semiconductors      (via sciencedaily.com)     Original source 

Researchers have developed a new, more environmentally friendly way to create conductive inks for use in organic electronics such as solar cells, artificial neurons, and soft sensors. The findings pave the way for future sustainable technology.

Chemistry: Biochemistry Chemistry: Organic Chemistry
Published

Physical processes can have hidden neural network-like abilities      (via sciencedaily.com)     Original source 

A new study shows that the physics principle of 'nucleation' can perform complex calculations that rival a simple neural network. The work may suggest avenues for new ways to think about computation using the principles of physics.

Chemistry: Organic Chemistry Energy: Alternative Fuels Energy: Technology Environmental: General
Published

Machine learning method speeds up discovery of green energy materials      (via sciencedaily.com)     Original source 

Researchers have developed a framework that uses machine learning to accelerate the search for new proton-conducting materials, that could potentially improve the efficiency of hydrogen fuel cells.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

Chemical synthesis: New strategy for skeletal editing on pyridines      (via sciencedaily.com)     Original source 

A team has introduced a strategy for converting carbon-nitrogen atom pairs in a frequently used ring-shaped compound into carbon-carbon atom pairs. The method has potential in the quest for active ingredients for new drugs, for example.

Chemistry: General Chemistry: Organic Chemistry Physics: General Physics: Optics
Published

Lighting the path: Exploring exciton binding energies in organic semiconductors      (via sciencedaily.com)     Original source 

Organic semiconductors are materials that find applications in various electronic devices. Exciton binding energy is an important attribute that influences the behavior of these materials. Now, researchers have employed advanced spectroscopic techniques to accurately determine these energies for various organic semiconductor materials, with a high precision of 0.1 electron volts. Their study reveals unexpected correlations that are poised to shape the future of organic optoelectronics, influence design principles, and find potential applications in bio-related materials.

Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry Energy: Batteries Energy: Technology Environmental: General Geoscience: Earth Science Geoscience: Geochemistry
Published

Next-generation batteries could go organic, cobalt-free for long-lasting power      (via sciencedaily.com)     Original source 

In the switch to 'greener' energy sources, the demand for rechargeable lithium-ion batteries is surging. However, their cathodes typically contain cobalt -- a metal whose extraction has high environmental and societal costs. Now, researchers in report evaluating an earth-abundant, carbon-based cathode material that could replace cobalt and other scarce and toxic metals without sacrificing lithium-ion battery performance.