Ecology: General Geoscience: Environmental Issues Geoscience: Landslides
Published

Salinity changes threatening marine ecosystems      (via sciencedaily.com)     Original source 

A groundbreaking study reveals the critical yet severely understudied factor of salinity changes in ocean and coastlines caused by climate change.

Geoscience: Earthquakes Geoscience: Landslides Mathematics: Statistics
Published

Geologists are using artificial intelligence to predict landslides      (via sciencedaily.com)     Original source 

Many factors influence where a landslide will occur, including the shape of the terrain, its slope and drainage areas, the material properties of soil and bedrock, and environmental conditions like climate, rainfall, hydrology and ground motion resulting from earthquakes. Geologists have developed a new technique that uses artificial intelligence to better predict where and why landslides may occur could bolster efforts to protect lives and property in some of the world's most disaster-prone areas. The new method improves the accuracy and interpretability of AI-based machine-learning techniques, requires far less computing power and is more broadly applicable than traditional predictive models.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Technology Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry Physics: General
Published

Don't wait, desalinate: A new approach to water purification      (via sciencedaily.com)     Original source 

A water purification system separates out salt and other unnecessary particles with an electrified version of dialysis. Successfully applied to wastewater with planned expansion into rivers and seas, the method saves money and saps 90% less energy than its counterparts.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Space: Astrophysics Space: Exploration Space: General Space: Structures and Features
Published

First detection of crucial carbon molecule      (via sciencedaily.com)     Original source 

Scientists detect a new carbon compound in space for the first time. Known as methyl cation (pronounced cat-eye-on) (CH3+), the molecule is important because it aids the formation of more complex carbon-based molecules. Methyl cation was detected in a young star system, with a protoplanetary disk, known as d203-506, which is located about 1,350 light-years away in the Orion Nebula.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

Making the most of minuscule metal mandalas      (via sciencedaily.com)     Original source 

To unveil the previously elusive behavior and stability of complex metal compounds found in aqueous solutions called 'POMs', researchers have created a speciation atlas. This achievement has the potential to drive new discoveries and advancements in fields like catalysis, medicine, and beyond.

Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry
Published

Biodegradable gel shows promise for cartilage regeneration      (via sciencedaily.com)     Original source 

A gel that combines both stiffness and toughness is a step forward in the bid to create biodegradable implants for joint injuries, according to new research. Mimicking articular cartilage, found in our knee and hip joints, is challenging. This cartilage is key to smooth joint movement, and damage to it can cause pain, reduce function, and lead to arthritis. One potential solution is to implant artificial scaffolds made of proteins that help the cartilage regenerate itself as the scaffold biodegrades. How well the cartilage regenerates is linked to how well a scaffold can mimic the biological properties of cartilage, and to date, researchers have struggled to combine the seemingly incompatible properties of stiffness and toughness. Now, new research outlines a method to marry these properties in a biodegradable gel.

Chemistry: Biochemistry Chemistry: Organic Chemistry Environmental: General Geoscience: Environmental Issues
Published

The art and science of living-like architecture      (via sciencedaily.com)     Original source 

Collaborators have created 'living-like' bioactive interior architecture designed to one day protect us from hidden airborne threats. This publication establishes that the lab's biomaterial manufacturing process is compatible with the leading-edge cell-free engineering that gives the bioactive sites their life-like properties.

Biology: Cell Biology Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Alternative Fuels Energy: Fossil Fuels Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Clean, sustainable fuels made 'from thin air' and plastic waste      (via sciencedaily.com)     Original source 

Researchers have demonstrated how carbon dioxide can be captured from industrial processes -- or even directly from the air -- and transformed into clean, sustainable fuels using just the energy from the Sun.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Chemistry: Biochemistry Chemistry: Organic Chemistry
Published

A new tool to study complex genome interactions      (via sciencedaily.com)     Original source 

Genome Architecture Mapping captures complex, multi-way interactions in the genome. This is different than the workhorse technique of 3D genomics, which sees mostly two-way contacts, finds a new study.

Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Alternative Fuels Engineering: Nanotechnology Environmental: General Geoscience: Environmental Issues
Published

Cleaner air with a cold catalytic converter      (via sciencedaily.com)     Original source 

Although passenger vehicle catalytic converters have been mandatory for over 30 years, there is still plenty of room for improvement. For instance, they only work correctly when the engine is sufficiently hot, which is not always the case, especially with hybrid vehicles. Researchers have now developed an improved catalyst that can properly purify exhaust gases even at room temperature.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Engineering: Nanotechnology Physics: Optics
Published

Nanomaterials: 3D printing of glass without sintering      (via sciencedaily.com)     Original source 

A new process enables printing of nanometer-scale quartz glass structures directly onto semiconductor chips. A hybrid organic-inorganic polymer resin is used as feedstock material for 3D printing of silicon dioxide. Since the process works without sintering, the required temperatures are significantly lower. Simultaneously, increased resolution enables visible-light nanophotonics.

Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry Environmental: Ecosystems Environmental: General Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Preserving forests to protect deep soil from warming      (via sciencedaily.com)     Original source 

An innovative, decade-long experiment in the foothills of California's Sierra Nevada mountains shows carbon stocks buried deep underground are vulnerable to climate change. The findings have implications for mitigating global warming through the natural carbon sinks provided by soil and forests which capture 25% of all carbon emissions.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Batteries
Published

A novel, completely solid, rechargeable air battery      (via sciencedaily.com)     Original source 

Solid-state batteries use solid electrodes and solid electrolytes, unlike the more commonly known lithium-ion batteries, which use liquid electrolytes. Solid-state batteries overcome various challenges associated with liquid-based batteries, such as flammability, limited voltage, unstable reactants, and poor long-term cyclability and strength. Making advances in this field, researchers recently demonstrated an all-solid-state rechargeable air battery composed of a redox-active organic negative electrode and a proton-conductive polymer electrolyte.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Alternative Fuels Engineering: Nanotechnology Physics: Optics
Published

New material transforms light, creating new possibilities for sensors      (via sciencedaily.com)     Original source 

A new class of materials that can absorb low energy light and transform it into higher energy light might lead to more efficient solar panels, more accurate medical imaging and better night vision goggles.

Chemistry: Biochemistry Chemistry: Organic Chemistry
Published

New model offers a way to speed up drug discovery      (via sciencedaily.com)     Original source 

A model known as ConPLex can predict whether potential drug molecules will interact with specific protein targets, without having to perform the computationally intensive calculation of the molecules' structures. By applying a language model to protein-drug interactions, researchers can quickly screen large libraries of potential drug compounds.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Chemistry: Thermodynamics
Published

Sustainable technique to manufacture chemicals      (via sciencedaily.com)     Original source 

A newly published study details a novel mechanochemistry method that can produce chemicals using less energy and without the use of solvents that produce toxic waste.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Offbeat: General Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Breakthrough: Scientists develop artificial molecules that behave like real ones      (via sciencedaily.com)     Original source 

Scientists have developed synthetic molecules that resemble real organic molecules. A collaboration of researcher can now simulate the behavior of real molecules by using artificial molecules.

Chemistry: Biochemistry Chemistry: Organic Chemistry
Published

A new way to develop drugs without side effects      (via sciencedaily.com)     Original source 

Have you ever wondered how drugs reach their targets and achieve their function within our bodies? If a drug molecule or a ligand is a message, an inbox is typically a receptor in the cell membrane. One such receptor involved in relaying molecular signals is a G protein-coupled receptor (GPCR). About one-third of existing drugs work by controlling the activation of this protein. Researchers now reveal a new way of activating GPCR by triggering shape changes in the intracellular region of the receptor. This new process can help researchers design drugs with fewer or no side effects.