Showing 20 articles starting at article 441
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Organic Chemistry, Geoscience: Oceanography
Published Using electricity, scientists find promising new method of boosting chemical reactions



Chemists found a way to use electricity to boost a type of chemical reaction often used in synthesizing new candidates for pharmaceutical drugs. The research is an advance in the field of electrochemistry and shows a path forward to designing and controlling reactions -- and making them more sustainable.
Published New method illuminates druggable sites on proteins



Scientists develop a new, high-resolution technique for finding potential therapeutic targets on proteins in living cells. The findings could lead to more targeted therapeutics for nearly any human disease.
Published Aptamers: lifesavers; ion shields: aptamer guardians



Aptamers, nucleic acids capable of selectively binding to viruses, proteins, ions, small molecules, and various other targets, are garnering attention in drug development as potential antibody substitutes for their thermal and chemical stability as well as ability to inhibit specific enzymes or target proteins through three-dimensional binding. They also hold promise for swift diagnoses of colon cancer and other challenging diseases by targeting elusive biomarkers. Despite their utility, these aptamers are susceptible to easy degradation by multiple enzymes, presenting a significant challenge.
Published Breakthrough in organic semiconductor synthesis paves the way for advanced electronic devices



A research team has achieved a significant breakthrough in the field of organic semiconductors. Their successful synthesis and characterization of a novel molecule called 'BNBN anthracene' has opened up new possibilities for the development of advanced electronic devices.
Published Molecules exhibit non-reciprocal interactions without external forces



Researchers have discovered that molecules experience non-reciprocal interactions without external forces. Fundamental forces such as gravity and electromagnetism are reciprocal, where two objects are attracted to each other or are repelled by each other. In our everyday experience, however, interactions don t seem to follow this reciprocal law.
Published New material allows for better hydrogen-based batteries and fuel cells



Researchers have developed a solid electrolyte for transporting hydride ions at room temperature. This breakthrough means that the full advantages of hydrogen-based solid-state batteries and fuel cells can be had without the need for constant hydration. This will reduce their complexity and cost, which is essential for advancing towards a practical hydrogen-based energy economy.
Published Blue PHOLEDs: Final color of efficient OLEDs finally viable in lighting



Lights could soon use the full color suite of perfectly efficient organic light-emitting diodes, or OLEDs, that last tens of thousands of hours. The new phosphorescent OLEDs, commonly referred to as PHOLEDs, can maintain 90% of the blue light intensity for 10-14 times longer than other designs that emit similar deep blue colors. That kind of lifespan could finally make blue PHOLEDs hardy enough to be commercially viable in lights that meet the Department of Energy's 50,000-hour lifetime target. Without a stable blue PHOLED, OLED lights need to use less-efficient technology to create white light.
Published Millions of mysterious pits in the ocean decoded



The world's ocean are a vast habitat for countless creatures that settle, spawn, dig or feed on the seafloor. They also influence the shape of the ocean floor. How exactly this takes place has been scarcely investigated so far. In an interdisciplinary study, geoscientists, biologists and oceanographers, have examined crater-like depressions on the seafloor of the North Sea. They were able to show that these directly relate to the habitats of porpoises and sand eels, and for the first time provide a conclusive explanation for the importance of vertebrates in shaping the seafloor.
Published Scientists uncover link between the ocean's weather and global climate



Scientists outline the first direct evidence linking seemingly random weather systems in the ocean with climate on a global scale. The team's work creates a promising framework for better understanding the climate system.
Published New strategy reveals 'full chemical complexity' of quantum decoherence



Scientists have developed a method to extract the spectral density for molecules in solvent using simple resonance Raman experiments -- a method that captures the full complexity of chemical environments.
Published Unveiling molecular origami: A breakthrough in dynamic materials



A research team has unveiled a remarkable breakthrough in the form of a two-dimensional (2D) Metal Organic Framework (MOF) that showcases unprecedented origami-like movement at the molecular level. This pioneering study represents a significant leap forward in the field of dynamic materials, while also hinting at futuristic applications in metamaterials and quantum computing.
Published First observation of how water molecules move near a metal electrode



A collaborative team of experimental and computational physical chemists has made an important discovery in the field of electrochemistry, shedding light on the movement of water molecules near metal electrodes. This research holds profound implications for the advancement of next-generation batteries utilizing aqueous electrolytes.
Published For this emergent class of materials, 'solutions are the problem'



Materials scientists developed a fast, low-cost, scalable method to make covalent organic frameworks (COFs), a class of crystalline polymers whose tunable molecular structure, large surface area and porosity could be useful in energy applications, semiconductor devices, sensors, filtration systems and drug delivery.
Published 15 most pressing issues for conservation, including invertebrate decline and changing marine ecosystems



Since 2009, the Cambridge Conservation Initiative has coordinated an annual horizon scan, a well-established method for predicting which threats, changes, and technologies will have the biggest impact on biological conservation in the following year. This year, the 15th horizon scan included 31 scientists, practitioners, and policymakers who developed a list of 96 issues, which they eventually narrowed down to the fifteen most novel and impactful. Their findings include topics related to sustainable energy, declining invertebrate populations, and changing marine ecosystems.
Published Coral atoll islands may outpace sea-level rise with local ecological restoration, scientists say



Ecological restoration may save coral atoll islands from the rising seas of climate change, according to an international team of scientists, conservationists, and an indigenous leader.
Published Computational model captures the elusive transition states of chemical reactions



Researchers developed a way to quickly calculate the transition state structure of a chemical reaction, using machine-learning models.
Published Positive tipping points must be triggered to solve climate crisis



Positive tipping points must be triggered if we are to avoid the severe consequences of damaging Earth system tipping points, researchers say.
Published Nanoprobe with a barcode



Protein-splitting enzymes play an important role in many physiological processes. Such proteases are generally present in an inactive state, only becoming activated under certain conditions. Some are linked to diseases like infections or cancer, making it important to have methods that can selectively detect active proteases. Scientists have introduced a new class of protease-activity sensors: gold nanoparticles equipped with peptide DNA.
Published Underwater architects: The 'burrowing effect' of foraminifera on marine environments



Impact of single-cell organisms on sediment oxygen levels and bacterial diversity measured for the first time.
Published Nanoparticle-delivered RNA reduces neuroinflammation in lab tests



In mice and human cell cultures, researchers showed that novel nanoparticles can deliver a potential therapy for inflammation in the brain, a prominent symptom in Alzheimer's disease.