Showing 20 articles starting at article 801
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Organic Chemistry, Geoscience: Oceanography
Published Single-molecule valve: Breakthrough in nanoscale control



A research group has succeeded in regulating the flow of single molecules in solution by opening and closing the nanovalve mounted on the nanofluidic device by applying external pressure. The research group fabricated a device with a ribbon-like, thin, soft glass sheet on the top, and at the bottom a hard glass substrate having nanochannels and nanovalve seats. By applying external pressure to the soft glass sheet to open and close the valve, they succeeded in directly manipulating and controlling the flow of individual molecules in solution. They also observed an effect of fluorescence signal amplification when single fluorescent molecules are confined in the tiny nanospace inside the valve. The effect can be ascribed to the nanoconfinement, which suppresses the random motion of the molecules.
Published Indo-Pacific corals more resilient to climate change than Atlantic corals



In the face of global warming and other environmental changes, corals in the Atlantic Ocean have declined precipitously in recent years, while corals in the Pacific and Indian Oceans are faring better. By describing several species of symbiotic algae that these corals need to grow, an international team has found that these mutualistic relationships from the Indo-Pacific may be more flexible and ultimately resilient to higher ocean temperatures than those in the Atlantic.
Published Upcycling method turns textile trash to functional coatings



In an effort to make textiles more sustainable, a new method allows researchers to break old clothing down chemically and reuse polyester compounds to create fire resistant, anti-bacterial or wrinkle-free coatings that could then be applied to clothes and fabrics.
Published Self-folding origami machines powered by chemical reaction



Scientists have harnessed chemical reactions to make microscale origami machines self-fold -- freeing them from the liquids in which they usually function, so they can operate in dry environments and at room temperature.
Published West Antarctic Ice Sheet retreated far inland, re-advanced since last Ice Age



The West Antarctic Ice Sheet is melting rapidly, raising concerns it could cross a tipping point of irreversible retreat in the next few decades if global temperatures rise 1.5 to 2.0 degrees Celsius (2.7 to 3.8 degrees Fahrenheit) above preindustrial levels. New research finds that 6,000 years ago, the grounded edge of the ice sheet may have been as far as 250 kilometers (160 miles) inland from its current location, suggesting the ice retreated deep into the continent after the end of the last ice age and re-advanced before modern retreat began.
Published Previously unknown intercellular electricity may power biology



Researchers have discovered that the electrical fields and activity that exist through a cell's membrane also exist within and around another type of cellular structure called biological condensates. Like oil droplets floating in water, these structures exist because of differences in density. Their foundational discovery could change the way researchers think about biological chemistry. It could also provide a clue as to how the first life on Earth harnessed the energy needed to arise.
Published The future is foggy for Arctic shipping



As the Arctic warms and loses sea ice, trans-Arctic shipping has increased, reducing travel time and costs for international trade. However, a new study finds that the Arctic Ocean is getting foggier as ice disappears, reducing visibility and causing costly delays as ships slow to avoid hitting dangerous sea ice.
Published Pulling the plug on viral infections: CRISPR isn't just about cutting



CRISPR claimed scientific fame for its ability to quickly and accurately edit genes. But, at the core, CRISPR systems are immune systems that help bacteria protect themselves from viruses. A new study reveals a previously unrecognized player in one such system -- a membrane protein that enhances anti-viral defense. According to study authors, the finding upends the idea that CRISPR systems mount their defense only by degrading RNA and DNA in cells.
Published Male California sea lions are becoming bigger and better fighters as their population rebounds



California sea lions have managed to maintain -- and, in the case of males, increase -- their average body size as their population grows and competition for food becomes fiercer. This is in contrast to other marine mammals, whose average body size tends to decrease as their numbers increase. Researchers report that sexual selection was a strong driving force for males to grow bigger and to strengthen muscles in their neck and jaw that help them fight for mates. Both male and female sea lions evaded food shortages by diversifying their diets and, in some cases, foraging further from the shore.
Published A transistor made of wood



Researchers have developed the first transistor made of wood. Their study paves the way for further development of wood-based electronics and control of electronic plants.
Published Twilight zone at risk from climate change



Life in the ocean's 'twilight zone' could decline dramatically due to climate change, new research suggests.
Published How spheres become worms



A previously unknown form of hydrogel formation has been elucidated: chemists found unusual interactions between polymers.
Published A simple paper test could offer early cancer diagnosis



Engineers designed a nanoparticle sensor that could enable early diagnosis of cancer with a simple urine test. The sensors, which can detect many cancerous proteins, could also be used to distinguish the type of a tumor or how it is responding to treatment.
Published Ocean ecosystem: Mixotrophic microorganisms play key role



Researchers have identified a previously unknown group of bacteria, called UBA868, as key players in the energy cycle of the deep ocean. They are significantly involved in the biogeochemical cycle in the marine layer between 200 and 1000 meters.
Published CO2 recycling: What is the role of the electrolyte?



The greenhouse gas carbon dioxide can be converted into useful hydrocarbons by electrolysis. The design of the electrolysis cell is crucial in this process. The so-called zero-gap cell is particularly suitable for industrial processes. But there are still problems: The cathodes clog up quickly.
Published Outstanding performance of organic solar cell using tin oxide



Organic solar cells have a photoactive layer that is made from polymers and small molecules. The cells are very thin, can be flexible, and are easy to make. However, the efficiency of these cells is still much below that of conventional silicon-based ones. Applied physicists have now fabricated an organic solar cell with an efficiency of over 17 percent, which is in the top range for this type of material. It has the advantage of using an unusual device structure that is produced using a scalable technique.
Published Massive iceberg discharges during the last ice age had no impact on nearby Greenland, raising new questions about climate dynamics



New findings suggest that Heinrich Events had no discernible impact on temperatures in Greenland, which could have repercussions for scientists' understanding of past climate dynamics.
Published Researchers team up with national lab for innovative look at copper reactions



Researchers are working to get a better look at how peroxides on the surface of copper oxide promote the oxidation of hydrogen but inhibit the oxidation of carbon monoxide, allowing them to steer oxidation reactions.
Published Cryo-imaging lifts the lid on fuel cell catalyst layers



Thanks to a novel combination of cryogenic transmission electron tomography and deep learning, EPFL researchers have provided a first look at the nanostructure of platinum catalyst layers, revealing how they could be optimized for fuel cell efficiency.
Published Greener batteries



Our modern rechargeable batteries, such as lithium-ion batteries, are anything but sustainable. One alternative is organic batteries with redox-organic electrode materials (OEMs), which can be synthesized from natural 'green' materials. A team has now introduced a new OEM for aqueous organic high-capacity batteries that can be easily and cheaply recycled.