Biology: Biochemistry Biology: General Chemistry: Biochemistry Chemistry: Organic Chemistry Engineering: Nanotechnology
Published

Why carbon nanotubes fluoresce when they bind to certain molecules      (via sciencedaily.com)     Original source 

Nanotubes can serve as biosensors. They change their fluorescence when they bind to certain molecules. Until now, it was unclear why. Researchers have gained new insights into the cause of the fluorescence.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Pioneering plasma-catalytic process for CO2 hydrogenation to methanol under ambient conditions      (via sciencedaily.com)     Original source 

A research team reports a pioneering plasma-catalytic process for the hydrogenation of CO2 to methanol at room temperature and atmospheric pressure. This breakthrough addresses the limitations of traditional thermal catalysis, which often requires high temperatures and pressures, resulting in low CO2 conversion and methanol yield.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

Chemists develop new sustainable reaction for creating unique molecular building blocks      (via sciencedaily.com)     Original source 

Polymers can be thought of like trains: Just as a train is composed of multiple cars, polymers are made up of multiple monomers, and the couplings between the train cars are similar to the chemical bonds that link monomers together. While polymers have myriad applications -- from drug delivery to construction materials -- their structures and functions are restricted by the chemically similar monomer building blocks they're composed of. Now, chemists have developed a new reaction to create unique monomers in a controlled way. This reaction, which uses nickel as a catalyst, ultimately enables scientists to create polymers with unique and modifiable properties for drug delivery, energy storage, microelectronics and more.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

Breakthrough in molecular control: New bioinspired double helix with switchable chirality      (via sciencedaily.com)     Original source 

The control of artificial double-helical structures, which are essential for the development of high-order molecular systems, remains difficult. In a new study, researchers have developed novel double-helical monometallofoldamers that exhibit controllable helicity inversion and chiral information transfer, in response to external stimuli. These monometallofoldamers can lead to novel artificial supramolecular systems for molecular information transmission, amplification, replication, and other exciting applications in various fields of technology.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Environmental: General Environmental: Water Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Forever chemical pollution can now be tracked      (via sciencedaily.com)     Original source 

Researchers developed a way to fingerprint organofluorine compounds -- sometimes called 'forever chemicals' --which could help authorities trace them to their source when they end up in aquifers, waterways or soil.

Chemistry: Biochemistry Chemistry: Organic Chemistry Energy: Alternative Fuels Energy: Technology Environmental: General Physics: Optics
Published

Stacking molecules like plates improves organic solar device performance      (via sciencedaily.com)     Original source 

Researchers found that how well light-converting molecules stack together in a solid is important for how well they convert light into electric current. A rigid molecule that stacked well showed excellent electricity generation in an organic solar cell and photocatalyst, easily outperforming a similar flexible molecule that did not stack well. This new way of improving the design of molecules could be used to pioneer the next generation of light-converting devices.

Anthropology: Cultures Anthropology: General Archaeology: General Geoscience: Earth Science Geoscience: Environmental Issues Offbeat: Earth and Climate Offbeat: General Offbeat: Paleontology and Archeology Paleontology: Climate Paleontology: Fossils
Published

Carvings at ancient monument may be world's oldest calendars      (via sciencedaily.com)     Original source 

Markings on a stone pillar at a 12,000 year-old archaeological site in Turkey likely represent the world's oldest solar calendar, created as a memorial to a devastating comet strike, experts suggest.

Anthropology: Early Humans Anthropology: General Offbeat: General Offbeat: Paleontology and Archeology Paleontology: Fossils Paleontology: General
Published

Smallest arm bone in human fossil record sheds light on the dawn of Homo floresiensis      (via sciencedaily.com)     Original source 

A new study reports the discovery of extremely rare early human fossils from the Indonesian island of Flores, including an astonishingly small adult limb bone. Dated to about 700,000 years old, the new findings shed light on the evolution of Homo floresiensis, the so-called 'Hobbits' of Flores whose remains were uncovered in 2003 at Liang Bua cave in the island's west.

Chemistry: General Chemistry: Organic Chemistry
Published

Engineers develop general, high-speed technology to model, explain catalytic reactions      (via sciencedaily.com)     Original source 

A research team developed artificial intelligence technology that could find ways to improve researchers' understanding of the chemical reactions involved in ammonia production and other complex chemical reactions.

Anthropology: Early Humans Anthropology: General Biology: Biochemistry Biology: Evolutionary Biology: General Biology: Zoology Offbeat: General Offbeat: Paleontology and Archeology Offbeat: Plants and Animals Paleontology: Fossils Paleontology: General
Published

Half a billion-year-old spiny slug reveals the origins of mollusks      (via sciencedaily.com)     Original source 

Exceptional fossils with preserved soft parts reveal that the earliest mollusks were flat, armored slugs without shells. The new species, Shishania aculeata, was covered with hollow, organic, cone-shaped spines. The fossils preserve exceptionally rare detailed features which reveal that these spines were produced using a sophisticated secretion system that is shared with annelids (earthworms and relatives).

Anthropology: Cultures Anthropology: General Mathematics: Modeling
Published

Demographics of north African human populations unravelled using genomic data and artificial intelligence      (via sciencedaily.com)     Original source 

A new study places the origin of the Imazighen in the Epipaleolithic, more than twenty thousand years ago. The research concludes that the genetic origin of the current Arab population of north Africa is far more recent than previously believed, placing it in the seventh century AD. The team has designed an innovative demographic model that uses artificial intelligence to analyze the complete genomes of the two populations.

Anthropology: General Mathematics: Statistics Offbeat: Computers and Math Offbeat: General Offbeat: Paleontology and Archeology
Published

Modern behavior explains prehistoric economies      (via sciencedaily.com)     Original source 

What if the 'Market Economy' always existed? Archaeologists tried to answer this question by researching how much Bronze Age people used to spend to sustain their daily lives. Their results show that, starting at least 3,500 years ago, the spending habits of prehistoric Europeans were not substantially different from what they are today.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

The next generation of RNA chips      (via sciencedaily.com)     Original source 

An international research team has succeeded in developing a new version of RNA building blocks with higher chemical reactivity and photosensitivity. This can significantly reduce the production time of RNA chips used in biotechnological and medical research. The chemical synthesis of these chips is now twice as fast and seven times more efficient.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Molecular Chemistry: Biochemistry Chemistry: Organic Chemistry
Published

Unraveling a key junction underlying muscle contraction      (via sciencedaily.com)     Original source 

Using powerful new visualization technologies, researchers have captured the first 3-D images of the structure of a key muscle receptor, providing new insights on how muscles develop across the animal kingdom and setting the stage for possible future treatments for muscular disorders.

Chemistry: Biochemistry Chemistry: Organic Chemistry
Published

Mucus-based bio-ink could be used to print and grow lung tissue      (via sciencedaily.com)     Original source 

Lung diseases kill millions of people around the world each year. Treatment options are limited, and animal models for studying these illnesses and experimental medications are inadequate. Now, researchers describe their success in creating a mucus-based bioink for 3D printing lung tissue. This advance could one day help study and treat chronic lung conditions.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Microbiology Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry Offbeat: General Offbeat: Plants and Animals
Published

Injury dressings in first-aid kits provide a new technique to reveal shark species after bite incidents      (via sciencedaily.com)     Original source 

Scientists have revealed that injury dressings found in first-aid kits can reliably be used to identify shark species involved in bite incidents by deploying medical gauze to gather DNA samples from aquatic equipment, such as surfboards.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Chemistry: Biochemistry Chemistry: Organic Chemistry
Published

Precise genetics: New CRISPR method enables efficient DNA modification      (via sciencedaily.com)     Original source 

A research group has developed a new method that further improves the existing CRISPR/Cas technologies: it allows a more precise and seamless introduction of tags into proteins at the gene level. This technology could significantly improve research on proteins in living organisms and opens up new possibilities for medical research.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Organic nanozymes have broad applications from food and agriculture to biomedicine      (via sciencedaily.com)     Original source 

Nanozymes are tiny, engineered substances that mimic the catalytic properties of natural enzymes, and they serve a variety of purposes in biomedicine, chemical engineering, and environmental applications. They are typically made from inorganic materials, including metal-based elements, which makes them unsuitable for many purposes due to their toxicity and high production costs. Organic-based nanozymes partially overcome some of these problems and have the potential for a broader range of applications, including food and agriculture, but they are still in the early stages of development. A new paper provides an overview of the current state of organic nanozymes and their future potential.

Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry
Published

New additive process can make better -- and greener -- high-value chemicals      (via sciencedaily.com)     Original source 

Researchers have achieved a significant breakthrough that could lead to better -- and greener -- agricultural chemicals and everyday products. Using a process that combines natural enzymes and light, the team developed an eco-friendly way to precisely mix fluorine, an important additive, into chemicals called olefins -- hydrocarbons used in a vast array of products, from detergents to fuels to medicines. This groundbreaking method offers an efficient new strategy for creating high-value chemicals with potential applications in agrochemicals, pharmaceuticals, renewable fuels, and more.