Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Tackling industrial emissions begins at the chemical reaction      (via sciencedaily.com)     Original source 

Researchers are proposing a new way to curb industrial emissions, by tapping into the 'atomic intelligence' of liquid metals to deliver greener and more sustainable chemical reactions.

Chemistry: General Chemistry: Organic Chemistry Energy: Alternative Fuels
Published

A single-molecule-based organic porous material with great potential for efficient ammonia storage      (via sciencedaily.com)     Original source 

Novel porous crystalline solid shows promise as an efficient and durable material for ammonia (NH3) capture and storage, report scientists. Made through a simple reprecipitation process, the proposed organic compound can reversibly adsorb and release NH3 via simple pressurization and decompression at room temperature. Its stability and cost-effectiveness make this material a promising energy carrier for future hydrogen economies.

Archaeology: General Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry Paleontology: Fossils Paleontology: General
Published

Nanoscopic imaging aids in understanding protein, tissue preservation in ancient bones      (via sciencedaily.com)     Original source 

A pilot study shows that nanoscopic 3-D imaging of ancient bone not only provides further insight into the changes soft tissues undergo during fossilization, it also has potential as a fast, practical way to determine which specimens are likely candidates for ancient DNA and protein sequence preservation.

Anthropology: Cultures Offbeat: General Offbeat: Paleontology and Archeology
Published

Hunter-gatherers kept an 'orderly home' in the earliest known British dwelling      (via sciencedaily.com)     Original source 

Archaeological evidence from the world-famous Mesolithic site of Star Carr in North Yorkshire has shown that hunter-gatherers likely kept an orderly home by creating 'zones' for particular domestic activities.

Chemistry: Organic Chemistry Energy: Alternative Fuels Environmental: Water
Published

Maximizing hydrogen peroxide formation during water electrolysis      (via sciencedaily.com)     Original source 

When water is split electrolytically, the result is typically hydrogen -- and 'useless' oxygen. Instead of oxygen, you can also produce hydrogen peroxide, which is required for many branches of industry. This, however, requires certain reaction conditions.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Waste Styrofoam can now be converted into polymers for electronics      (via sciencedaily.com)     Original source 

A new study describes a chemical reaction that can convert Styrofoam into a high-value conducting polymer known as PEDOT:PSS. Researchers also noted that the upgraded plastic waste can be successfully incorporated into functional electronic devices, including silicon-based hybrid solar cells and organic electrochemical transistors.

Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Converting wastewater to fertilizer with fungal treatment      (via sciencedaily.com)     Original source 

Creating fertilizers from organic waste can help reduce the consumption of fossil fuels and promote sustainable production. One way of doing this is through hydrothermal liquefaction (HTL), which converts biomass into biocrude oil through a high-temperature, high-pressure process. Two studies explore the use of a fungal treatment to convert the leftover wastewater into fertilizer for agricultural crops.

Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Microbes found to destroy certain 'forever chemicals'      (via sciencedaily.com)     Original source 

An environmental engineering team has discovered that specific bacterial species can cleave the strong fluorine-to-carbon bond certain kinds of 'forever chemical' water pollutants, offering promise for low-cost treatments of contaminated drinking water.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Chemistry: Biochemistry Chemistry: Organic Chemistry
Published

A new addition to the CRISPR toolbox: Teaching the gene scissors to detect RNA      (via sciencedaily.com)     Original source 

CRISPR-Cas systems, defense systems in bacteria, have become a plentiful source of technologies for molecular diagnostics. Researchers have now expanded this extensive toolbox further. Their novel method, called PUMA, enables the detection of RNA with Cas12 nucleases, which naturally target DNA. PUMA promises a wide range of applications and high accuracy.

Chemistry: Biochemistry Chemistry: Organic Chemistry
Published

Transporting precious cargo using the body's own delivery system      (via sciencedaily.com)     Original source 

Delivery systems in body continuously move materials between cells. Hijacking these systems allowed scientists to improve loading and delivery of therapeutic proteins. Biophysical principles could be used to enable more cost-effective loading of biological cargo into cell-derived delivery systems. Engineered molecules loaded up to 240 times more protein than other loading methods.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

Crystals from radioactive metal actinium      (via sciencedaily.com)     Original source 

Researchers grew crystals containing actinium and illuminated them with X-rays to learn how the radioactive metal binds with other elements. That information could help design better cancer treatments.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry
Published

A better way to make RNA drugs      (via sciencedaily.com)     Original source 

RNA drugs are the next frontier of medicine, but manufacturing them requires an expensive and labor-intensive process that limits production and produces metric tons of toxic chemical waste. Researchers report a new, enzyme-based RNA synthesis method that can produce strands of RNA with both natural and modified nucleotides without the environmental hazards.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Environmental: General Geoscience: Geochemistry Offbeat: Earth and Climate Offbeat: General
Published

Scientists create computer program that 'paints' the structure of molecules in the style of Piet Mondrian      (via sciencedaily.com)     Original source 

Scientists have created a computer program that 'paints' the structure of molecules in the style of famous Dutch artist, Piet Mondrian. Researchers are opening eyes and minds to the beauty of molecular structure, as well as posing new questions about the form and function of the molecules themselves.

Anthropology: Cultures Anthropology: Early Humans Anthropology: General Offbeat: General Offbeat: Paleontology and Archeology
Published

'A history of contact': Geneticists are rewriting the narrative of Neanderthals and other ancient humans      (via sciencedaily.com)     Original source 

Using genomes from 2,000 living humans as well as three Neanderthals and one Denisovan, an international team mapped the gene flow between the hominin groups over the past quarter-million years.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Microbiology Biology: Molecular Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry Geoscience: Geochemistry
Published

Nanoplastics and 'forever chemicals' disrupt molecular structures, functionality      (via sciencedaily.com)     Original source 

Researchers have made significant inroads in understanding how nanoplastics and per- and polyfluoroalkyl substances (PFAS) -- commonly known as forever chemicals -- disrupt biomolecular structure and function. The work shows that the compounds can alter proteins found in human breast milk and infant formulas -- potentially causing developmental issues downstream.