Showing 20 articles starting at article 281
< Previous 20 articles Next 20 articles >
Categories: Chemistry: General, Chemistry: Organic Chemistry
Published Research on RNA editing illuminates possible lifesaving treatments for genetic diseases



The research explores how CRISPR can be used to edit RNA.
Published Laser imaging could offer early detection for at-risk artwork



A bright yellow pigment favored a century ago by Impressionists such as Matisse and Van Gogh is losing its luster. Researchers have developed a laser imaging technique that can detect the first tiny signs of the pigment's breakdown before they're visible to the eye. The work could help art conservators take earlier steps to make the color last.
Published When does a conductor not conduct?



A new study uncovers a switchable, atomically-thin metal-organic material that could be used in future low-energy electronic technologies. The study shows that electron interactions in this material create an unusual electrically-insulating phase in which electrons are 'frozen'. By reducing the population of electrons, the authors are able to unfreeze the remaining electrons, allowing for controlled transitions between insulating and electrically-conductive phases: the key to the on-off binary operations of classical computing.
Published Getting dynamic information from static snapshots



Researchers have created TopicVelo, a powerful new method of using the static snapshots from scRNA-seq to study how cells and genes change over time. This will help researchers better study how embryos develop, cells differentiate, cancers form, and the immune system reacts.
Published More efficient molecular motor widens potential applications



Light-driven molecular motors were first developed nearly 25 years ago. However, making these motors do actual work proved to be a challenge. In a new paper, scientists describe improvements that bring real-life applications closer.
Published A shortcut for drug discovery



For most human proteins, there are no small molecules known to bind them chemically (so called 'ligands'). Ligands frequently represent important starting points for drug development but this knowledge gap critically hampers the development of novel medicines. Researchers at CeMM, in a collaboration with Pfizer, have now leveraged and scaled a method to measure the binding activity of hundreds of small molecules against thousands of human proteins. This large-scale study revealed tens of thousands of ligand-protein interactions that can now be explored for the development of chemical tools and therapeutics. Moreover, powered by machine learning and artificial intelligence, it allows unbiased predictions of how small molecules interact with all proteins present in living human cells. These groundbreaking results have been published in the journal Science (DOI: 10.1126/science.adk5864), and all generated data and models are freely available for the scientific community.
Published Nanomaterial that mimics proteins could be basis for new neurodegenerative disease treatments



A newly developed nanomaterial that mimics the behavior of proteins could be an effective tool for treating Alzheimer's and other neurodegenerative diseases. The nanomaterial alters the interaction between two key proteins in brain cells -- with a potentially powerful therapeutic effect.
Published Scientists released long-term data of ground solar-induced fluorescence to improve understanding of canopy-level photosynthesis



A recent study utilized ground-based instruments to measure solar-induced fluorescence (SIF) that reflect plant health and photosynthesis.
Published The longer spilled oil lingers in freshwater, the more persistent compounds it produces



Oil is an important natural resource for many industries, but it can lead to serious environmental damage when accidentally spilled. While large oil spills are highly publicized, every year there are many smaller-scale spills into lakes, rivers and oceans. The longer that oil remains in freshwater, the more chemical changes it undergoes, creating products that can persist in the environment.
Published Key to efficient and stable organic solar cells



A team of researchers has made a significant breakthrough in the field of organic photovoltaics.
Published 'Like a nanoscopic Moon lander': Scientists unlock secret of how pyramidal molecules move across surfaces



Scientists have watched a molecule move across a graphite surface in unprecedented detail. It turns out this particular molecule moves like a Moon lander -- and the insights hold potential for future nanotechnologies.
Published The secret to saving old books could be gluten-free glues



'Bookworm' is a cute thing to call a voracious reader, but actual bookworms -- as well as microorganisms and time -- break down the flour pastes commonly used to keep old publications in one piece. Now, researchers have analyzed the proteins in wheat-based glues applied in historic bookbinding to provide insights on their adhesiveness and how they degrade. This information could help conservators restore and preserve treasured tomes for future generations.
Published Rubber-like stretchable energy storage device fabricated with laser precision



Scientists use laser ablation technology to develop a deformable micro-supercapacitor.
Published Biophysics: Testing how well biomarkers work



Researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy.
Published A chemical mystery solved -- the reaction explaining large carbon sinks



A mystery that has puzzled the scientific community for over 50 years has finally been solved. A team has discovered that a certain type of chemical reaction can explain why organic matter found in rivers and lakes is so resistant to degradation.
Published Researchers create artificial cells that act like living cells



Researchers describe the steps they took to manipulate DNA and proteins -- essential building blocks of life -- to create cells that look and act like cells from the body. This accomplishment, a first in the field, has implications for efforts in regenerative medicine, drug delivery systems and diagnostic tools.
Published Laser-treated cork absorbs oil for carbon-neutral ocean cleanup



Researchers use laser treatments to transform ordinary cork into a powerful tool for treating oil spills. They tested variations of a fast-pulsing laser treatment, closely examining the nanoscopic structural changes and measuring the ratio of oxygen and carbon in the material, changes in the angles with which water and oil contact the surface, and the material's light wave absorption, reflection, and emission across the spectrum to determine its durability after multiple cycles of warming and cooling. The laser treatments not only help to better absorb oil, but also work to keep water out.
Published More economical and sustainable rechargeable batteries



Lithium salts make batteries powerful but expensive. An ultralow-concentration electrolyte based on the lithium salt LiDFOB may be a more economical and more sustainable alternative. Cells using these electrolytes and conventional electrodes have been demonstrated to have high performance. In addition, the electrolyte could facilitate both production and recycling of the batteries.
Published New copper-catalyzed C-H activation strategy



Inspired by what human liver enzymes can do, chemists have developed a new set of copper-catalyzed organic synthesis reactions for building and modifying pharmaceuticals and other molecules. The new reactions are expected to be widely used in drug discovery and optimization, as well as in other chemistry-based industries.
Published Development of organic semiconductors featuring ultrafast electrons



Collaboration has led to the successful observation of these ultrafast electrons within conducting two-dimensional polymers.