Showing 20 articles starting at article 461

< Previous 20 articles        Next 20 articles >

Categories: Chemistry: General, Chemistry: Organic Chemistry

Return to the site home page

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Batteries
Published

Chemists decipher reaction process that could improve lithium-sulfur batteries      (via sciencedaily.com)     Original source 

Lithium-sulfur batteries have exceptional theoretical capacity and performance in combination with an element in abundant supply. But the intricate reaction mechanism, particularly during discharge, has been challenging to solve. Researchers have identified the key pathways to a complex sulfur reduction reaction that leads to energy loss and reduced battery life span. The study's findings establish the whole reaction network for the first time and offer insight into electrocatalyst design for improved batteries.

Chemistry: Biochemistry Chemistry: Organic Chemistry Energy: Alternative Fuels Energy: Batteries Energy: Fossil Fuels Environmental: General Geoscience: Environmental Issues
Published

Improving fuel cell durability with fatigue-resistant membranes      (via sciencedaily.com)     Original source 

In hydrogen fuel cells, electrolyte membranes frequently undergo deformation and develop cracks during operation. A research team has recently introduced a fatigue-resistant polymer electrolyte membrane for hydrogen fuel cells, employing an interpenetrating network of Nafion (a plastic electrolyte) and perfluoropolyether (a rubbery polymer). This innovation will not only improve fuel cell vehicles but also promises advancements in diverse technologies beyond transportation, spanning applications from drones to desalination filters and backup power sources.

Chemistry: General Engineering: Robotics Research
Published

GPT-3 transforms chemical research      (via sciencedaily.com)     Original source 

Scientists demonstrate how GPT-3 can transform chemical analysis, making it faster and more user-friendly.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry
Published

Solving an age-old mystery about crystal formation      (via sciencedaily.com)     Original source 

A crystals expert has published an answer to how crystals are formed and how molecules become a part of them, solving an age-old mystery about crystal formation.

Chemistry: General Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: General Physics: Optics
Published

Unveiling the generation principles of charged particles 'trion' in 2D semiconductor      (via sciencedaily.com)     Original source 

Researchers pioneer dynamic manipulation and the generation principles of trion at the nanoscale using tip-enhanced cavity-spectroscopy.

Chemistry: General Energy: Alternative Fuels Energy: Fossil Fuels Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Ammonia attracts the shipping industry, but researchers warn of its risks      (via sciencedaily.com)     Original source 

Switching to ammonia as a marine fuel, with the goal of decarbonization, can instead create entirely new problems. This is shown in a study where researchers carried out life cycle analyses for batteries and for three electrofuels including ammonia. Eutrophication and acidification are some of the environmental problems that can be traced to the use of ammonia -- as well as emissions of laughing gas, which is a very potent greenhouse gas.

Biology: Cell Biology Biology: Microbiology Chemistry: General Offbeat: General Offbeat: Plants and Animals
Published

Scientists 'break the mould' by creating new colors of 'blue cheese'      (via sciencedaily.com)     Original source 

Experts have discovered how to create different colors of blue cheese. After discovering how the classic blue-green veining is created, a team of experts were able to create a variety of different fungal strains that could be used to make cheese with colors ranging from white to yellow-green to red-brown-pink and light and dark blues.

Chemistry: Biochemistry Chemistry: Organic Chemistry Engineering: Graphene Engineering: Nanotechnology Environmental: Water
Published

Ultra-sensitive lead detector could significantly improve water quality monitoring      (via sciencedaily.com)     Original source 

Engineers have developed an ultra-sensitive sensor made with graphene that can detect extraordinarily low concentrations of lead ions in water. The device achieves a record limit of detection of lead down to the femtomolar range, which is one million times more sensitive than previous technologies.

Chemistry: General Chemistry: Organic Chemistry Engineering: Nanotechnology
Published

Edge-to-edge assembly technique for 2D nanosheets      (via sciencedaily.com)     Original source 

A research team develops edge-to-edge assembly technique for 2D nanosheets.

Chemistry: General Engineering: Nanotechnology Physics: General Physics: Quantum Physics
Published

Single proton illuminates perovskite nanocrystals-based transmissive thin scintillators      (via sciencedaily.com)     Original source 

Researchers have developed a transmissive thin scintillator using perovskite nanocrystals, designed for real-time tracking and counting of single protons. The exceptional sensitivity is attributed to biexcitonic radiative emission generated through proton-induced upconversion and impact ionization.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Engineering: Graphene Engineering: Nanotechnology
Published

Key dynamics of 2D nanomaterials: View to larger-scale production      (via sciencedaily.com)     Original source 

A team of researchers mapped out how flecks of 2D materials move in liquid -- knowledge that could help scientists assemble macroscopic-scale materials with the same useful properties as their 2D counterparts.

Chemistry: General Chemistry: Organic Chemistry Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Intensifying the production of high-value compounds from industrial waste      (via sciencedaily.com)     Original source 

New research demonstrates how glycerol carbonate, a biosourced industrial additive, can be produced in record time using CO2 and a by-product of the cooking oil recycling industry. The process relies on a hybrid approach combining fundamental physical organic chemistry and applied flow process technology. Two industrial wastes are thus converted into glycerol carbonate, a biosourced rising star with high added-value.

Chemistry: Biochemistry Chemistry: General Environmental: Ecosystems Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry Geoscience: Geography Geoscience: Oceanography
Published

Engineers unmask nanoplastics in oceans for the first time, revealing their true shapes and chemistry      (via sciencedaily.com)     Original source 

Millions of tons of plastic waste enter the oceans each year. The sun's ultraviolet light and ocean turbulence break down these plastics into invisible nanoparticles that threaten marine ecosystems. In a new study, engineers have presented clear images of nanoplastics in ocean water off the coasts of China, South Korea and the United States, and in the Gulf of Mexico. These tiny plastic particles, which originated from such consumer products as water bottles, food packaging and clothing, were found to have surprising diversity in shape and chemical composition.

Chemistry: General Chemistry: Inorganic Chemistry Engineering: Graphene Engineering: Nanotechnology Physics: General
Published

Machine learning guides carbon nanotechnology      (via sciencedaily.com)     Original source 

Carbon nanostructures could become easier to design and synthesize thanks to a machine learning method that predicts how they grow on metal surfaces. The new approach will make it easier to exploit the unique chemical versatility of carbon nanotechnology.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Chemistry: Biochemistry Chemistry: Organic Chemistry
Published

Groundbreaking genome editing tools unlock new possibilities for precision medicine      (via sciencedaily.com)     Original source 

A team of researchers has achieved a major breakthrough in genome editing technology. They've developed a cutting-edge method that combines the power of designer-recombinases with programmable DNA-binding domains to create precise and adaptable genome editing tools.

Chemistry: General Chemistry: Inorganic Chemistry Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Ambitious roadmap for circular carbon plastics economy      (via sciencedaily.com)     Original source 

Researchers have outlined ambitious targets to help deliver a sustainable and net zero plastic economy. The authors argue for a rethinking of the technical, economic, and policy paradigms that have entrenched the status-quo, one of rising carbon emissions and uncontrolled pollution.

Chemistry: General Energy: Technology Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Decarbonizing the world's industries      (via sciencedaily.com)     Original source 

Harmful emissions from the industrial sector could be reduced by up to 85% across the world, according to new research. The sector, which includes iron and steel, chemicals, cement, and food and drink, emits around a quarter of global greenhouse gas (GHG) emissions -- planet-warming gases that result in climate change and extreme weather.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Engineering: Nanotechnology Physics: General Physics: Quantum Computing
Published

Small yet mighty: Showcasing precision nanocluster formation with molecular traps      (via sciencedaily.com)     Original source 

Nanoclusters (NCs) of transition metals like cobalt or nickel have widespread applications in drug delivery and water purification, with smaller NCs exhibiting improved functionalities. Downsizing NCs is, however, usually challenging. Now, scientists have demonstrated functional NC formation with atomic-scale precision. They successfully grew cobalt NCs on flat copper surfaces using molecular arrays as traps. This breakthrough paves the way for advancements like single-atom catalysis and spintronics miniaturization.

Chemistry: General Chemistry: Inorganic Chemistry Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry Geoscience: Geography Geoscience: Oceanography
Published

Some plastic straws degrade quicker than others      (via sciencedaily.com)     Original source 

Not all plastics are created the same, and some last longer in the ocean than others. Scientists have been working for years to quantify the environmental lifetimes of a wide range of plastic goods to see which have the shortest and longest lifespans in the ocean. To determine what plastics persist in the ocean, the team tests different products in large tanks that recreate the natural ocean environment.