Showing 20 articles starting at article 901
< Previous 20 articles Next 20 articles >
Categories: Chemistry: General, Chemistry: Organic Chemistry
Published Is the ocean a solution for ushering in the era of environmentally friendly energy?



Researchers confirm the superiority of seawater batteries that use chelating agents.
Published A transistor made of wood



Researchers have developed the first transistor made of wood. Their study paves the way for further development of wood-based electronics and control of electronic plants.
Published How spheres become worms



A previously unknown form of hydrogel formation has been elucidated: chemists found unusual interactions between polymers.
Published Chemists tackle the tough challenge of recycling mixed plastics



Polymer chemists have been finding ways to tackle the environmental problems humans have created with plastics waste. Now, a team has come up with fundamental new chemistry that seeds a creative solution to the challenge of recycling mixed-use plastics.
Published New chemistry can extract virgin-grade materials from wind turbine blades in one process



Researchers have developed a chemical process that can disassemble the epoxy composite of wind turbine blades and simultaneously extract intact glass fibers as well as one of the epoxy resin's original building blocks in a high quality. The recovered materials could potentially be used in the production of new blades.
Published A simple paper test could offer early cancer diagnosis



Engineers designed a nanoparticle sensor that could enable early diagnosis of cancer with a simple urine test. The sensors, which can detect many cancerous proteins, could also be used to distinguish the type of a tumor or how it is responding to treatment.
Published CO2 recycling: What is the role of the electrolyte?



The greenhouse gas carbon dioxide can be converted into useful hydrocarbons by electrolysis. The design of the electrolysis cell is crucial in this process. The so-called zero-gap cell is particularly suitable for industrial processes. But there are still problems: The cathodes clog up quickly.
Published Outstanding performance of organic solar cell using tin oxide



Organic solar cells have a photoactive layer that is made from polymers and small molecules. The cells are very thin, can be flexible, and are easy to make. However, the efficiency of these cells is still much below that of conventional silicon-based ones. Applied physicists have now fabricated an organic solar cell with an efficiency of over 17 percent, which is in the top range for this type of material. It has the advantage of using an unusual device structure that is produced using a scalable technique.
Published Researchers team up with national lab for innovative look at copper reactions



Researchers are working to get a better look at how peroxides on the surface of copper oxide promote the oxidation of hydrogen but inhibit the oxidation of carbon monoxide, allowing them to steer oxidation reactions.
Published Cryo-imaging lifts the lid on fuel cell catalyst layers



Thanks to a novel combination of cryogenic transmission electron tomography and deep learning, EPFL researchers have provided a first look at the nanostructure of platinum catalyst layers, revealing how they could be optimized for fuel cell efficiency.
Published Greener batteries



Our modern rechargeable batteries, such as lithium-ion batteries, are anything but sustainable. One alternative is organic batteries with redox-organic electrode materials (OEMs), which can be synthesized from natural 'green' materials. A team has now introduced a new OEM for aqueous organic high-capacity batteries that can be easily and cheaply recycled.
Published Synthetic biology meets fashion in engineered silk



Engineers developed a method to create synthetic spider silk at high yields while retaining strength and toughness using mussel foot proteins.
Published Reinforcement learning: From board games to protein design



An AI strategy proven adept at board games like Chess and Go, reinforcement learning, has now been adapted for a powerful protein design program. The results show that reinforcement learning can do more than master board games. When trained to solve long-standing puzzles in protein science, the software excelled at creating useful molecules. In one experiment, proteins made with the new approach were found to be more effective at generating useful antibodies in mice than were previous methods. If this method is applied to the right research problems, it likely could accelerate progress in a variety of scientific fields.
Published AI system can generate novel proteins that meet structural design targets



A new machine-learning system can generate protein designs with certain structural features, and which do not exist in nature. These proteins could be utilized to make materials that have similar mechanical properties to existing materials, like polymers, but which would have a much smaller carbon footprint.
Published Quantum computer applied to chemistry



There are high expectations that quantum computers may deliver revolutionary new possibilities for simulating chemical processes. This could have a major impact on everything from the development of new pharmaceuticals to new materials. Researchers have now used a quantum computer to undertake calculations within a real-life case in chemistry.
Published Nanoparticles provoke immune response against tumors but avoid side effects



Researchers find that when immunostimulatory drugs called imidazoquinolines are delivered using specialized bottlebrush nanoparticles, the drugs provoke the immune system to attack tumors while eliminating the side effects that occur when the drugs are given on their own.
Published New findings pave the way for stable organic solar cells that may enable cheap and renewable electricity generation



Organic solar cells show great promise for clean energy applications. However, photovoltaic modules made from organic semiconductors do not maintain their efficiency for long enough under sunlight for real world applications. Scientists have now revealed an important reason why organic solar cells rapidly degrade under operation. This new insight will drive the design of more stale materials for organic semiconductor-based photovoltaics, thus enabling cheap and renewable electricity generation.
Published Stronger paper bags, reused repeatedly then recycled for biofuel could be future



As the world searches for ways to reduce the use of plastics such as single-use plastic bags, a novel study demonstrates a process to make paper bags stronger -- especially when they get wet -- to make them a more viable alternative.
Published Novel nanocages for delivery of small interfering RNAs



Small interfering RNAs (siRNAs) are novel therapeutics that can be used to treat a wide range of diseases. This has led to a growing demand for selective, efficient, and safe ways of delivering siRNA in cells. Now, in a cooperation between the Universities of Amsterdam and Leiden, researchers have developed dedicated molecular nanocages for siRNA delivery. In a paper just out in the Journal Chem they present nanocages that are easy to prepare and display tuneable siRNA delivery characteristics.
Published Using machine learning to find reliable and low-cost solar cells



Hybrid perovskites are organic-inorganic molecules that have received a lot of attention over the past 10 years for their potential use in renewable energy. Some are comparable in efficiency to silicon for making solar cells, but they are cheaper to make and lighter, potentially allowing a wide range of applications, including light-emitting devices. However, they tend to degrade way more readily than silicon when exposed to moisture, oxygen, light, heat, and voltage. Researchers used machine learning and high-throughput experiments to identify perovskites with optimal qualities out of the very large field of possible structures.