Showing 20 articles starting at article 501
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Organic Chemistry, Offbeat: Paleontology and Archeology
Published Dinosaur feathers reveal traces of ancient proteins



Palaeontologists have discovered X-ray evidence of proteins in fossil feathers that sheds new light on feather evolution.
Published Split gene-editing tool offers greater precision


To make a gene-editing tool more precise and easier to control, engineers split it into two pieces that only come back together when a third molecule is added.
Published Researchers reveal the origins of zirconium nitride's superior performance


A group of researchers have unraveled the mysteries behind a recently identified material -- zirconium nitride (ZrN) -- that helps power clean energy reactions. Their proposed framework will help future designs for transition metal nitrides, paving a path for generating cleaner energy.
Published Ritual use of human remains dating from the Neolithic



An international study has documented post-mortem bone modifications not linked to consumption.
Published Archaeologists discover world's oldest wooden structure



Half a million years ago, earlier than was previously thought possible, humans were building structures made of wood, according to new research.
Published Slow growth in crocodile ancestors pre-dated their semi-aquatic lifestyle



A groundbreaking study is reshaping our understanding of crocodile evolution by pinpointing the onset of slow growth rates to the Late Triassic period, much earlier than the previously assumed Early Jurassic timeline. The research highlights newly discovered fossil crocodile ancestors (known as crocodylomorphs) that exhibited slow growth rates, similar to modern-day crocodilians. Intriguingly, these early crocodylomorphs were not the lethargic, semi-aquatic creatures we are familiar with today; they were small, active, and fully terrestrial. The study also suggests that this slow-growth strategy was not a mere evolutionary quirk but a survival mechanism, as only the slow-growing crocodylomorphs managed to survive the End-Triassic mass extinction. This stands in stark contrast to the fast-growing dinosaurs of the same era, setting the stage for the divergent evolutionary paths that would later define their modern descendants.
Published New Si-based photocatalyst enables efficient solar-driven hydrogen production and biomass refinery


A research team has achieved a significant breakthrough in the development of a hybrid silicon photocatalyst.
Published Prehistoric fish fills 100 million year gap in evolution of the skull



X-rays of an ancient jawless fish shows earliest-known example of internal cartilage skull, unlike that of any other known vertebrate.
Published Imaging the smallest atoms provides insights into an enzyme's unusual biochemistry


A team has used neutron crystallography to image all of the atoms in a radical intermediate of a copper amine oxidase enzyme. They disclosed previously unknown details, such as precise conformational changes, that help to explain the enzyme's biochemistry. This work might help researchers engineer enzymes that facilitate unusual chemistry or are highly efficient at room temperature that are useful in chemical industry.
Published Fast-track strain engineering for speedy biomanufacturing


Using engineered microbes as microscopic factories has given the world steady sources of life-saving drugs, revolutionized the food industry, and allowed us to make sustainable versions of valuable chemicals previously made from petroleum. But behind each biomanufactured product on the market today is the investment of years of work and many millions of dollars in research and development funding. Scientists want to help the burgeoning industry reach new heights by accelerating and streamlining the process of engineering microbes to produce important compounds with commercial-ready efficiency.
Published New recipes for origin of life may point way to distant, inhabited planets



Life on a faraway planet -- if it's out there -- might not look anything like life on Earth. But there are only so many chemical ingredients in the universe's pantry, and only so many ways to mix them. Scientists have now exploited those limitations to write a cookbook of hundreds of chemical recipes with the potential to give rise to life. Their ingredient list could focus the search for life elsewhere in the universe by pointing out the most likely conditions -- planetary versions of mixing techniques, oven temperatures and baking times -- for the recipes to come together.
Published RNA for the first time recovered from an extinct species



A new study shows the isolation and sequencing of more than a century-old RNA molecules from a Tasmanian tiger specimen preserved at room temperature in a museum collection. This resulted in the reconstruction of skin and skeletal muscle transcriptomes from an extinct species for the first time. The researchers note that their findings have relevant implications for international efforts to resurrect extinct species, including both the Tasmanian tiger and the woolly mammoth, as well as for studying pandemic RNA viruses.
Published Carbon atoms coming together in space



Lab-based studies reveal how carbon atoms diffuse on the surface of interstellar ice grains to form complex organic compounds, crucial to reveal the chemical complexity in the universe.
Published Scientists invent a bright way to upcycle plastics into liquids that can store hydrogen energy


Scientists have created a process that can upcycle most plastics into chemicals useful for energy storage, using light-emitting diodes (LEDs) and a commercially available catalyst, all at room temperature. The new process is very energy-efficient and can be easily powered by renewable energy in the future, unlike other heat-driven recycling processes like pyrolysis. Currently, only nine per cent of plastics globally are recycled and the rest are typically discarded in landfills or incinerated.
Published Researchers discover iron-targeting approaches to halt proliferation of cancer cells


Researchers discovered a new class of iron-targeting compounds that hamper the proliferation of cultured malignant cells in a laboratory setting.
Published Important connectivity of metal oxides with hydrogen


A recent article proposes a new way to understand how materials interact with hydrogen.
Published Super antifreeze in cells: The ability to survive in ice and snow developed in animals far earlier than we thought



More than 400 million years ago, an insect-like animal called the springtail developed a small protein that prevents its cells from freezing.
Published New ionic materials boost hydrogen fuel cell efficiency!


A research team has made a groundbreaking advancement in improving the efficiency of hydrogen fuel cells, which are gaining significant attention as eco-friendly next-generation energy sources.
Published Polymer that can be adapted to high and low temperature extremes created


Researchers have developed two closely related polymers that respond differently to high and low temperature thresholds, despite their similar design. The polymer pair could be used in applications in medicine, protein synthesis, protective coatings and other fields.
Published Engineers design more powerful RNA vaccines


By adding synergistic self-adjuvanting properties to COVID-19 RNA vaccines, researchers showed they could significantly boost the immune response generated in mice.