Anthropology: General Offbeat: General Offbeat: Paleontology and Archeology
Published

'Monstrous births' and the making of race in the nineteenth-century United States      (via sciencedaily.com)     Original source 

From the Middle Ages to the Enlightenment, 'monstrous births' -- malformed or anomalous fetuses -- were, to Western medicine, an object of superstition. In 19th-century America, they became instead an object of the 'modern scientific study of monstrosity,' a field formalized by French scientist Isidore Geoffroy Saint-Hilaire. This clinical turn was positioned against the backdrop of social, political, and economic activity that codified laws governing slavery, citizenship, immigration, family, wealth, and access to resources.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

Extending the playing field for organosulfurs: a new way to synthesize sulfinate esters      (via sciencedaily.com) 

Sulfinate esters, a type of organosulfur compounds, are typically synthesized using thiols. However, these substances are difficult to work with due to their unpleasant smell and oxidizability in air. Now, a research team has found a way to produce sulfinate esters through the direct oxidation of thioesters, which are easily accessible and stable. Their findings will help expand the field of organosulfur chemistry and hopefully lead to new applications in pharmaceuticals.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

Chemists devise a method for C-H activation of alcohols      (via sciencedaily.com) 

Chemists have extended a powerful molecule-building method -- called C-H activation -- to the broad class of chemicals known as alcohols.

Biology: Marine Biology: Zoology Ecology: Endangered Species Ecology: Extinction Ecology: Nature Ecology: Sea Life Environmental: Ecosystems Environmental: General Environmental: Water Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geography Geoscience: Oceanography Offbeat: Earth and Climate Offbeat: General Offbeat: Paleontology and Archeology Offbeat: Plants and Animals Paleontology: General
Published

Fossil spines reveal deep sea's past      (via sciencedaily.com)     Original source 

Right at the bottom of the deep sea, the first very simple forms of life on earth probably emerged a long time ago. Today, the deep sea is known for its bizarre fauna. Intensive research is being conducted into how the number of species living on the sea floor have changed in the meantime. Some theories say that the ecosystems of the deep sea have emerged again and again after multiple mass extinctions and oceanic upheavals. Today's life in the deep sea would thus be comparatively young in the history of the Earth. But there is increasing evidence that parts of this world are much older than previously thought.

Anthropology: Early Humans Anthropology: General Biology: Evolutionary Ecology: Animals Ecology: Trees Offbeat: General Offbeat: Paleontology and Archeology Offbeat: Plants and Animals
Published

Human shoulders and elbows first evolved as brakes for climbing apes      (via sciencedaily.com)     Original source 

Researchers report that the flexible shoulders and elbows that allow us to throw a football or reach a high shelf may have evolved as a natural braking system that let our primate ancestors get out of trees without dying. The researchers used sports-analysis software to compare the climbing movements of chimpanzees and small monkeys called mangabeys. While the animals climb up trees similarly, the researchers found that the shallow, rounded shoulder joints and shortened elbow bones that chimps have -- similar to humans -- allow them to fully extend their arms above their heads when climbing down, holding onto branches like a person going down a ladder to support their greater weight. When early humans left forests for the grassy savanna, these versatile appendages would have been essential for gathering food and using tools for hunting and defense. The findings are among the first to identify the significance of 'downclimbing' in the evolution of apes and early humans.

Chemistry: General Chemistry: Organic Chemistry Energy: Alternative Fuels Energy: Batteries Engineering: Graphene Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Efficient and mild: Recycling of used lithium-ion batteries      (via sciencedaily.com) 

Lithium-ion batteries (LIBs) provide our portable devices like tablets and mobiles -- and increasingly also vehicles -- with power. As the share of volatile renewable energy needing electricity storage increases, more and more LIBs are needed, lithium prices rise, resources dwindle, and the amount of depleted batteries that contain toxic substances increases. Researchers introduce a novel approach for the recovery of lithium from used LIBs.

Biology: Biotechnology Biology: Microbiology Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry Geoscience: Environmental Issues Geoscience: Geochemistry
Published

3D-printed 'living material' could clean up contaminated water      (via sciencedaily.com) 

A 'living material,' made of a natural polymer combined with genetically engineered bacteria, could offer a sustainable and eco-friendly solution to clean pollutants from water. Researchers developed their living material using a seaweed-based polymer and bacteria that have been programmed to produce an enzyme that transforms various organic pollutants into harmless compounds. In tests, heir material decontaminated water solutions tainted with a pollutant from textile manufacturing: indigo carmine, a blue dye that is used to color denim.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Chemistry: Thermodynamics Energy: Alternative Fuels
Published

Striking gold with molecular mystery solution for potential clean energy      (via sciencedaily.com) 

Hydrogen spillover is exactly what it sounds like. Small metal nanoparticles anchored on a thermally stable oxide, like silica, comprise a major class of catalysts, which are substances used to accelerate chemical reactions without being consumed themselves. The catalytic reaction usually occurs on the reactive -- and expensive -- metal, but on some catalysts, hydrogen atom-like equivalents literally spill from the metal to the oxide. These hydrogen-on-oxide species are called 'hydrogen spillover.'

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Physics: Optics
Published

Growing triple-decker hybrid crystals for lasers      (via sciencedaily.com) 

By controlling the arrangement of multiple inorganic and organic layers within crystals using a novel technique, researchers have shown they can control the energy levels of electrons and holes (positive charge carriers) within a class of materials called perovskites. This tuning influences the materials' optoelectronic properties and their ability to emit light of specific energies, demonstrated by their ability to function as a source of lasers.

Anthropology: General Archaeology: General Offbeat: General Offbeat: Paleontology and Archeology
Published

The scent of the afterlife unbottled in new study of ancient Egyptian mummification balms      (via sciencedaily.com)     Original source 

A team of researchers has recreated one of the scents used in the mummification of an important Egyptian woman more than 3500 years ago.

Chemistry: Organic Chemistry
Published

New blood test for noncoding RNA significantly improves cancer detection      (via sciencedaily.com) 

A lab is developing more accurate and powerful liquid biopsy technologies that take advantage of signals from RNA 'dark matter,' an understudied area of the genome.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Taking photoclick chemistry to the next level      (via sciencedaily.com) 

Researchers have been able to substantially improve photoclick chemistry. They were able to boost the reactivity of the photoclick compound in the popular PQ-ERA reaction through strategic molecular substitution. They now report a superb photoreaction quantum yield, high reaction rates and notable oxygen tolerance.

Chemistry: General Chemistry: Organic Chemistry Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Direct formation of sulfuric acid in the atmosphere      (via sciencedaily.com) 

In the atmosphere, gaseous sulfuric acid can form particles that influence the physical properties of clouds. Thus, the formation of sulfuric acid in the gas phase directly affects the radiative forcing and Earth's climate. In addition to the known formation from sulfur dioxide, researchers have now been able to demonstrate through experiments that there is another formation pathway that has been speculated about for decades. Sulfuric acid in the atmosphere can also be formed directly by the oxidation of organic sulfur compounds. This new production pathway can be responsible for up to half of the gaseous sulfuric acid formation over the oceans and is thus of high importance for climate projections -- especially over the oceans of the Southern Hemisphere.

Chemistry: Organic Chemistry Energy: Alternative Fuels Physics: General
Published

Energy storage in molecules      (via sciencedaily.com) 

Molecular photoswitches that can both convert and store energy could be used to make solar energy harvesting more efficient. A team of researchers has used a quantum computing method to find a particularly efficient molecular structure for this purpose. Their procedure was based on a dataset of more than 400,000 molecules, which they screened to find the optimum molecular structure for solar energy storage materials.

Chemistry: Organic Chemistry
Published

Neural network helps design brand new proteins      (via sciencedaily.com) 

A scientist combines attention neural networks with graph neural networks to better understand and design proteins. The approach couples the strengths of geometric deep learning with those of language models to predict existing protein properties and envision new proteins that nature has not yet devised. The model turns numbers, descriptions, tasks, and other elements into symbols for neural networks to use.

Chemistry: General Chemistry: Organic Chemistry
Published

Overcoming the challenges to synthesising iron--sulfur proteins outside the glovebox      (via sciencedaily.com) 

Iron--sulfur (Fe--S) proteins, essential to all life forms, are difficult to synthesise due to the complicated molecular machinery involved and sensitivity of Fe--S clusters to oxygen. In a new study, a team of researchers devised an innovative protocol for synthesising mature Fe--S proteins, by bringing together a recombinant sulfur assimilation (SUF) system and an oxygen-scavenging system, thereby, paving the way for new technologies and a better understanding of the evolution of life.

Anthropology: General Biology: Evolutionary Biology: Zoology Offbeat: Paleontology and Archeology Offbeat: Plants and Animals Paleontology: Fossils Paleontology: General
Published

Three-eyed distant relative of insects and crustaceans reveals amazing detail of early animal evolution      (via sciencedaily.com)     Original source 

Scientists use cutting edge scanning technology to reconstruct 'fossil monster' that lived half a billion years ago. The creature's soft anatomy was well-preserved, allowing it to be imaged almost completely: It fills a gap in our understanding of the evolution of arthropods such as insects and crustaceans.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

A first for ferrocene: Organometallic capsule with unusual charge-transfer interactions      (via sciencedaily.com) 

An organometallic capsule that can reversibly assemble and disassemble in response to chemical stimuli was recently developed by chemists. Comprising ferrocene-based bent amphiphiles, this new capsule can act as a host for various types of guest molecules, such as electron acceptors and dyes. Thanks to the controllable release of its cargo, the capsule would find applications in catalysis, medicine, and biotechnology.