Showing 20 articles starting at article 641
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Organic Chemistry, Offbeat: Paleontology and Archeology
Published Scales or feathers? It all comes down to a few genes



Scales, spines, feathers and hair are examples of vertebrate skin appendages, which constitute a remarkably diverse group of micro-organs. Despite their natural multitude of forms, these appendages share early developmental processes at the embryonic stage. Researchers have discovered how to permanently transform the scales that normally cover the feet of chickens into feathers, by specifically modifying the expression of certain genes.
Published Scientists reveal breakthrough that could lead to cleaner hydrogen energy



Chemists have taken a big step toward splitting hydrogen and oxygen molecules to make pure hydrogen -- without using fossil fuels. Results from pulse radiolysis experiments have laid bare the complete reaction mechanism for an important group of 'water-splitting' catalysts. The work means scientists are closer to making pure hydrogen from renewable energy, an energy source that could contribute to a greener future for the nation and world.
Published With formic acid towards CO2 neutrality



Researchers develop a new method for the sustainable use of carbon dioxide.
Published Culprit behind destruction of New York's first dinosaur museum revealed



A new paper rewrites the history of the darkest, most bizarre event in the history of palaeontology.
Published A better route to benzocyclobutenes, sought-after buildingblocks for drugs



Chemists devise a new, C-H activation-based method for the synthesis of BCBs.
Published Giants of the Jurassic seas were twice the size of a killer whale



There have been heated debates over the size of Jurassic animals. The speculation was set to continue, but now a chance discovery in an Oxfordshire museum has led to palaeontologists publishing a paper on a Jurassic species potentially reaching a whopping 14.4 meters -- twice the size of a killer whale.
Published Nature favors creatures in largest and smallest sizes



Surveying the body sizes of Earth's living organisms, researchers found that the planet's biomass -- the material that makes up all living organisms -- is concentrated in organisms at either end of the size spectrum.
Published A jumping conclusion: Fossil insect ID'd as new genus, species of prodigious leaper, the froghopper



A fossil arthropod entombed in 100-million-year-old Burmese amber has been identified as a new genus and species of froghopper, known today as an insect with prodigious leaping ability in adulthood following a nymphal stage spent covered in a frothy fluid.
Published Unlocking the power of photosynthesis for clean energy production



Researchers are embarking on a groundbreaking project to mimic the natural process of photosynthesis using bacteria to deliver electrons to a nanocrystal semiconductor photocatalyst. By leveraging the unique properties of microorganisms and nanomaterials, the system has the potential to replace current approaches that derive hydrogen from fossil fuels, revolutionizing the way hydrogen fuel is produced and unlocking a powerful source of renewable energy.
Published Scintillating science: Researchers improve materials for radiation detection and imaging technology



A team of researchers has improved a new generation of organic-inorganic hybrid materials that can improve image quality in X-ray machines, CT scans and other radiation detection and imaging technologies.
Published Tiny microbes could brew big benefits for green biomanufacturing



Scientists find new route in bacteria to decarbonize industry. The discovery could reduce greenhouse gas emissions from the manufacturing of fuels, drugs, and chemicals. A research team has engineered bacteria to produce new-to-nature carbon products that could provide a powerful route to sustainable biochemicals.
Published Nose shape gene inherited from Neanderthals



Humans inherited genetic material from Neanderthals that affects the shape of our noses, finds a new study.
Published Scientists capture elusive chemical reaction using enhanced X-ray method



Researchers have captured one of the fastest movements of a molecule called ferricyanide for the first time by combining two ultrafast X-ray spectroscopy techniques. They think their approach could help map more complex chemical reactions like oxygen transportation in blood cells or hydrogen production using artificial photosynthesis.
Published Researchers use generative AI to design novel proteins



Researchers have developed an artificial intelligence system that can create proteins not found in nature using generative diffusion, the same technology behind popular image-creation platforms such as DALL-E and Midjourney.
Published Scientists recover an ancient woman's DNA from a 20,000-year-old pendant



An international research team has for the first time successfully isolated ancient human DNA from a Paleolithic artefact: a pierced deer tooth discovered in Denisova Cave in southern Siberia. To preserve the integrity of the artefact, they developed a new, nondestructive method for isolating DNA from ancient bones and teeth. From the DNA retrieved they were able to reconstruct a precise genetic profile of the woman who used or wore the pendant, as well as of the deer from which the tooth was taken. Genetic dates obtained for the DNA from both the woman and the deer show that the pendant was made between 19,000 and 25,000 years ago. The tooth remains fully intact after analysis, providing testimony to a new era in ancient DNA research, in which it may become possible to directly identify the users of ornaments and tools produced in the deep past.
Published New tusk-analysis techniques reveal surging testosterone in male woolly mammoths



Traces of sex hormones extracted from a woolly mammoth's tusk provide the first direct evidence that adult males experienced musth, a testosterone-driven episode of heightened aggression against rival males, according to a new study.
Published Single-molecule valve: Breakthrough in nanoscale control



A research group has succeeded in regulating the flow of single molecules in solution by opening and closing the nanovalve mounted on the nanofluidic device by applying external pressure. The research group fabricated a device with a ribbon-like, thin, soft glass sheet on the top, and at the bottom a hard glass substrate having nanochannels and nanovalve seats. By applying external pressure to the soft glass sheet to open and close the valve, they succeeded in directly manipulating and controlling the flow of individual molecules in solution. They also observed an effect of fluorescence signal amplification when single fluorescent molecules are confined in the tiny nanospace inside the valve. The effect can be ascribed to the nanoconfinement, which suppresses the random motion of the molecules.
Published Upcycling method turns textile trash to functional coatings



In an effort to make textiles more sustainable, a new method allows researchers to break old clothing down chemically and reuse polyester compounds to create fire resistant, anti-bacterial or wrinkle-free coatings that could then be applied to clothes and fabrics.
Published Self-folding origami machines powered by chemical reaction



Scientists have harnessed chemical reactions to make microscale origami machines self-fold -- freeing them from the liquids in which they usually function, so they can operate in dry environments and at room temperature.
Published Previously unknown intercellular electricity may power biology



Researchers have discovered that the electrical fields and activity that exist through a cell's membrane also exist within and around another type of cellular structure called biological condensates. Like oil droplets floating in water, these structures exist because of differences in density. Their foundational discovery could change the way researchers think about biological chemistry. It could also provide a clue as to how the first life on Earth harnessed the energy needed to arise.