Showing 20 articles starting at article 101
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Thermodynamics, Geoscience: Volcanoes
Published Spying on a shape-shifting protein



Researchers are using crystallography to gain a better understanding of how proteins shapeshift. The knowledge can provide valuable insight into stopping and treating diseases.
Published Computational method discovers hundreds of new ceramics for extreme environments



If you have a deep-seated, nagging worry over dropping your phone in molten lava, you're in luck. Materials scientists have developed a method for rapidly discovering a new class of materials with heat and electronic tolerances so rugged that they that could enable devices to function at several thousands of degrees Fahrenheit.
Published Are diamonds GaN's best friend? Revolutionizing transistor technology



A research team has fabricated a gallium nitride (GaN) transistor using diamond, which of all natural materials has the highest thermal conductivity on earth, as a substrate, and they succeeded in increasing heat dissipation by more than two times compared with conventional transistors. The transistor is expected to be useful not only in the fields of 5G communication base stations, weather radar, and satellite communications, but also in microwave heating and plasma processing.
Published Researchers find way to weld metal foam without melting its bubbles



Researchers have identified a welding technique that can be used to join composite metal foam (CMF) components together without impairing the properties that make CMF desirable. CMFs hold promise for a wide array of applications because the pockets of air they contain make them light, strong and effective at insulating against high temperatures.
Published This adaptive roof tile can cut both heating and cooling costs



In a new study, researchers present an adaptive tile, which when deployed in arrays on roofs, can lower heating bills in winter and cooling bills in summer, without the need for electronics.
Published Ultra-hard material to rival diamond discovered



Scientists have solved a decades-long puzzle and unveiled a near unbreakable substance that could rival diamond, as the hardest material on earth, a study says. Researchers found that when carbon and nitrogen precursors were subjected to extreme heat and pressure, the resulting materials -- known as carbon nitrides -- were tougher than cubic boron nitride, the second hardest material after diamond.
Published Scientists 3D print self-heating microfluidic devices



A fabrication process can produce self-heating microfluidic devices in one step using a multimaterial 3D printer. These devices, which can be made rapidly and cheaply in large numbers, could help clinicians in remote parts of the world detect diseases without expensive lab equipment.
Published Permselectivity reveals a cool side of nanopores



Researchers investigated the thermal energy changes across nanopores that allow the selective flow of ions. Switching off the flow of ions in one direction led to a cooling effect. The findings have applications in nanofluidic devices and provide insight into the factors governing ion channels in cells. The nanopore material could be tailored to tune the cooling and arrays could be produced to scale up the effect.
Published Polaritons open up a new lane on the semiconductor highway



On the highway of heat transfer, thermal energy is moved by way of quantum particles called phonons. But at the nanoscale of today's most cutting-edge semiconductors, those phonons don't remove enough heat. That's why researchers are focused on opening a new nanoscale lane on the heat transfer highway by using hybrid quasiparticles called 'polaritons.'
Published Boiled bubbles jump to carry more heat



The topic of water and the way it can move producing water droplets that leap -- propelled by surface tension -- and frost that jumps -- by way of electrostatics -- is a central focus of a group of scientists. Having incorporated the two phases of liquid and solid in the first two volumes of their research, their third volume investigates a third phase, with boiling water.
Published Promising salt for heat storage



Salt batteries can store summer heat to be used in winter, but which salt works best for the purpose?
Published Toward sustainable energy applications with breakthrough in proton conductors



Donor doping into a mother material with disordered intrinsic oxygen vacancies, instead of the widely used strategy of acceptor doping into a material without oxygen vacancies, can greatly enhance the conductivity and stability of perovskite-type proton conductors at intermediate and low temperatures of 250--400 °C.
Published Massive 2022 eruption reduced ozone layer levels



The Hunga Tonga-Hunga Ha'apai volcano changed the chemistry and dynamics of the stratosphere in the year following the eruption, leading to unprecedented losses in the ozone layer of up to 7% over large areas of the Southern Hemisphere.
Published No one-size-fits-all solution for the net-zero grid



As power generation from sources like solar and wind increases, along with the introduction of devices such as heat pumps and batteries, a new optimization tool will help the UK plan for a greener electricity network. The researchers developed an algorithm to model how these smaller networks distributed electricity -- factoring in how local grids could become unbalanced by adding too many heat pumps in a single area or generating more electricity than the grid could accept.
Published New tool models viability of closed-loop geothermal systems



Researchers have used computer models of closed-loop geothermal systems to determine if they would be economically viable sources of renewable energy. They found that the cost of drilling would need to decrease significantly to hit cost targets.
Published 'Cooling glass' blasts building heat into space



Researchers aiming to combat rising global temperatures have developed a new 'cooling glass' that can turn down the heat indoors without electricity by drawing on the cold depths of space. The new technology, a microporous glass coating, can lower the temperature of the material beneath it by 3.5 degrees Celsius at noon, and has the potential to reduce a mid-rise apartment building's yearly carbon emissions by 10 percent.
Published New cooling ceramic can enhance energy efficiency for the construction sector and help combat global warming



Researchers have made a significant breakthrough in developing a passive radiative cooling (PRC) material. The material, known as cooling ceramic, has achieved high-performance optical properties for energy-free and refrigerant-free cooling generation. Its cost-effectiveness, durability and versatility make it highly suitable for commercialization in numerous applications, particularly in building construction.
Published Understanding the dynamic behavior of rubber materials



Rubber-like materials can exhibit both spring-like and flow-like behaviors simultaneously, which contributes to their exceptional damping abilities. To understand the dynamic viscoelasticity of these materials, researchers have recently developed a novel system that can conduct dynamic mechanical analysis and dynamic micro X-ray computed tomography simultaneously. This technology can enhance our understanding of the microstructure of viscoelastic materials and pave the way for the development of better materials.
Published 'Hot' new form of microscopy examines materials using evanescent waves



A team of researchers has built a prototype microscope that does not rely on backscattered radiation, instead uses passive detection of thermally excited evanescent waves. They have examined dielectric materials with passive near-field spectroscopy to develop a detection model to further refine the technique, working to develop a new kind of microscopy for examining nanoscopic material surfaces.
Published Researchers develop solid-state thermal transistor for better heat management



A team of researchers has unveiled a first-of-its-kind stable and fully solid-state thermal transistor that uses an electric field to control a semiconductor device's heat movement. The group's study details how the device works and its potential applications. With top speed and performance, the transistor could open new frontiers in heat management of computer chips through an atomic-level design and molecular engineering. The advance could also further the understanding of how heat is regulated in the human body.