Showing 20 articles starting at article 101
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Thermodynamics, Paleontology: Dinosaurs
Published Benefits of heat pumps



Millions of U.S. households would benefit from heat pumps, but the cost of installing the technology needs to come down to make their use a more attractive proposition.
Published Eco-friendly way to generate power from waste wood



A new study by researchers has revealed a sustainable method of efficiently converting waste heat into electricity using Irish wood products, while minimizing costs and environmental impact.
Published The hidden rule for flight feathers -- and how it could reveal which dinosaurs could fly



Scientists examined hundreds of birds in museum collections and discovered a suite of feather characteristics that all flying birds have in common. These 'rules' provide clues as to how the dinosaur ancestors of modern birds first evolved the ability to fly, and which dinosaurs were capable of flight.
Published Physicists capture the first sounds of heat 'sloshing' in a superfluid



For the first time, physicists have captured direct images of 'second sound,' the movement of heat sloshing back and forth within a superfluid. The results will expand scientists' understanding of heat flow in superconductors and neutron stars.
Published Dinosaurs' success helped by specialized stance and gait, study finds



Dinosaurs' range of locomotion made them incredibly adaptable, researchers have found.
Published Scientists pinpoint growth of brain's cerebellum as key to evolution of bird flight



Evolutionary biologists report they have combined PET scans of modern pigeons along with studies of dinosaur fossils to help answer an enduring question in biology: How did the brains of birds evolve to enable them to fly?
Published BESSY II: Local variations in the atomic structure of High-Entropy Alloys



High-entropy alloys can withstand extreme heat and stress, making them suitable for a variety of specific applications. A new study at the X-ray synchrotron radiation source BESSY II has now provided deeper insights into the ordering processes and diffusion phenomena in these materials.
Published Locusts' sense of smell boosted with custom-made nanoparticles



Scientists have harnessed the power of specially made nanostructures to enhance the neural response in a locust's brain to specific odors and to improve their identification of those odors.
Published Polymer power: Researchers enhance the safety of lithium batteries



Lithium-ion batteries face safety concerns as a result of internal separator issues which often lead to short circuits. Scientists have now developed a method to improve the stability and properties of separators with a layer of silicon dioxide and other functional molecules. Batteries employing these separators demonstrated improved performance and reduced growth of disruptive root-like structures, paving the way for high-safety batteries that can aid the adoption of electric vehicles and advanced energy storage systems.
Published Liquid lithium on the walls of a fusion device helps the plasma within maintain a hot edge



Emerging research suggests it may be easier to use fusion as a power source if liquid lithium is applied to the internal walls of the device housing the plasma. Past experiments studied solid lithium coatings and found they could enhance a plasma. The researchers were pleased they could yield similar results with liquid lithium, as it's better suited for use in a large-scale tokamak.
Published Potential use of topological magnets for magneto-thermoelectric energy conversion



Scientists are eager to harness the unique electrical properties of topological magnets for advancing thermoelectric materials. A collaborative research group has successfully induced positive and negative polarities, unlocking the potential for generating thermoelectric energy from materials with topological magnet properties.
Published Student discovers 200-million-year-old flying reptile



Gliding winged-reptiles were amongst the ancient crocodile residents of the Mendip Hills in Somerset, England, researchers at the have revealed.
Published Higher measurement accuracy opens new window to the quantum world



A team has developed a new measurement method that, for the first time, accurately detects tiny temperature differences in the range of 100 microkelvin in the thermal Hall effect. Previously, these temperature differences could not be measured quantitatively due to thermal noise. Using the well-known terbium titanate as an example, the team demonstrated that the method delivers highly reliable results. The thermal Hall effect provides information about coherent multi-particle states in quantum materials, based on their interaction with lattice vibrations (phonons).
Published Advancement in thermoelectricity could light up the Internet of Things



Researchers have improved the efficiency of heat-to-electricity conversion in gallium arsenide semiconductor microstructures. By judicious spatial alignment of electrons within a two-dimensional electron gas system with multiple subbands, one can substantially enhance the power factor compared with previous iterations of analogous systems. This work is an important advance in modern thermoelectric technology and will benefit the global integration of the Internet of Things.
Published Physicists identify overlooked uncertainty in real-world experiments



The rules of statistical physics address the uncertainty about the state of a system that arises when that system interacts with its environment. But they've long missed another kind. In a new paper, researchers argue that uncertainty in the thermodynamic parameters themselves -- built into equations that govern the energetic behavior of the system -- may also influence the outcome of an experiment.
Published Reflective materials and irrigated trees: Study shows how to cool one of the world's hottest cities by 4.5°C



A combination of cooling technologies and techniques could reduce the temperature and energy needs of Riyadh, Saudi Arabia.
Published Scientists use heat to create transformations between skyrmions and antiskyrmions



In an experiment that could help the development of new spintronics devices with low energy consumption, researchers have used heat and magnetic fields to create transformations between spin textures -- magnetic vortices and antivortices known as skyrmions and antiskyrmions -- in a single crystal thin plate device. Importantly, they achieved this at room temperature.
Published Spying on a shape-shifting protein



Researchers are using crystallography to gain a better understanding of how proteins shapeshift. The knowledge can provide valuable insight into stopping and treating diseases.
Published New research sheds light on an old fossil solving an evolutionary mystery



Picrodontids -- an extinct family of placental mammals that lived several million years after the extinction of the dinosaurs -- are not primates as previously believed.
Published Computational method discovers hundreds of new ceramics for extreme environments



If you have a deep-seated, nagging worry over dropping your phone in molten lava, you're in luck. Materials scientists have developed a method for rapidly discovering a new class of materials with heat and electronic tolerances so rugged that they that could enable devices to function at several thousands of degrees Fahrenheit.