Showing 20 articles starting at article 141
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Thermodynamics, Paleontology: Climate
Published Polymer power: Researchers enhance the safety of lithium batteries



Lithium-ion batteries face safety concerns as a result of internal separator issues which often lead to short circuits. Scientists have now developed a method to improve the stability and properties of separators with a layer of silicon dioxide and other functional molecules. Batteries employing these separators demonstrated improved performance and reduced growth of disruptive root-like structures, paving the way for high-safety batteries that can aid the adoption of electric vehicles and advanced energy storage systems.
Published Liquid lithium on the walls of a fusion device helps the plasma within maintain a hot edge



Emerging research suggests it may be easier to use fusion as a power source if liquid lithium is applied to the internal walls of the device housing the plasma. Past experiments studied solid lithium coatings and found they could enhance a plasma. The researchers were pleased they could yield similar results with liquid lithium, as it's better suited for use in a large-scale tokamak.
Published Ancient brown bear genomes sheds light on Ice Age losses and survival



The brown bear is one of the largest living terrestrial carnivores, and is widely distributed across the Northern Hemisphere. Unlike many other large carnivores that went extinct at the end of the last Ice Age (cave bear, sabretoothed cats, cave hyena), the brown bear is one of the lucky survivors that made it through to the present. The question has puzzled biologists for close to a century -- how was this so?
Published New tool predicts flood risk from hurricanes in a warming climate



A new method predicts how much flooding a coastal community is likely to experience as hurricanes evolve due to climate change. Using New York as a test case, the model predicts Hurricane Sandy-level flooding will occur roughly every 30 years by 2099.
Published Potential use of topological magnets for magneto-thermoelectric energy conversion



Scientists are eager to harness the unique electrical properties of topological magnets for advancing thermoelectric materials. A collaborative research group has successfully induced positive and negative polarities, unlocking the potential for generating thermoelectric energy from materials with topological magnet properties.
Published Ice age could help predict oceans' response to global warming



A new way to measure the ocean oxygen level and its connections with carbon dioxide in the Earth's atmosphere during the last ice age could help explain the role oceans played in past glacial melting cycles and improve predictions of how ocean carbon cycles will respond to global warming.
Published Why animals shrink over time explained with new evolution theory



The new theoretical research proposes that animal size over time depends on two key ecological factors.
Published The heat is on: Scientists discover southern Africa's temps will rise past the rhinos' tolerance



Southern Africa contains the vast majority of the world's remaining populations of both black and white rhinoceroses (80% and 92%, respectively). The region's climate is changing rapidly as a result global warming. Traditional conservation efforts aimed at protecting rhinos have focused on poaching, but until now, there has been no analysis of the impact that climate change may have on the animals. A research team has recently reported that, though the area will be affected by both higher temperatures and changing precipitation, the rhinos are more sensitive to rising temperatures, which will quickly increase above the animals' acceptable maximum threshold.
Published Higher measurement accuracy opens new window to the quantum world



A team has developed a new measurement method that, for the first time, accurately detects tiny temperature differences in the range of 100 microkelvin in the thermal Hall effect. Previously, these temperature differences could not be measured quantitatively due to thermal noise. Using the well-known terbium titanate as an example, the team demonstrated that the method delivers highly reliable results. The thermal Hall effect provides information about coherent multi-particle states in quantum materials, based on their interaction with lattice vibrations (phonons).
Published Stalagmites as climate archive



When combined with data from tree-ring records, stalagmites can open up a unique archive to study natural climate fluctuations, a research team has demonstrated. The researchers analyzed the isotopic composition of oxygen in a stalagmite formed from calcareous water in a cave in southern Germany. In conjunction with the data acquired from tree rings, they were able to reconstruct short-term climate fluctuations over centuries and correlate them with historically documented environmental events.
Published Advancement in thermoelectricity could light up the Internet of Things



Researchers have improved the efficiency of heat-to-electricity conversion in gallium arsenide semiconductor microstructures. By judicious spatial alignment of electrons within a two-dimensional electron gas system with multiple subbands, one can substantially enhance the power factor compared with previous iterations of analogous systems. This work is an important advance in modern thermoelectric technology and will benefit the global integration of the Internet of Things.
Published Physicists identify overlooked uncertainty in real-world experiments



The rules of statistical physics address the uncertainty about the state of a system that arises when that system interacts with its environment. But they've long missed another kind. In a new paper, researchers argue that uncertainty in the thermodynamic parameters themselves -- built into equations that govern the energetic behavior of the system -- may also influence the outcome of an experiment.
Published Key moment in the evolution of life on Earth captured in fossils



New research has precisely dated some of the oldest fossils of complex multicellular life in the world, helping to track a pivotal moment in the history of Earth when the seas began teeming with new lifeforms -- after four billion years of containing only single-celled microbes.
Published Reflective materials and irrigated trees: Study shows how to cool one of the world's hottest cities by 4.5°C



A combination of cooling technologies and techniques could reduce the temperature and energy needs of Riyadh, Saudi Arabia.
Published Scientists use heat to create transformations between skyrmions and antiskyrmions



In an experiment that could help the development of new spintronics devices with low energy consumption, researchers have used heat and magnetic fields to create transformations between spin textures -- magnetic vortices and antivortices known as skyrmions and antiskyrmions -- in a single crystal thin plate device. Importantly, they achieved this at room temperature.
Published Spying on a shape-shifting protein



Researchers are using crystallography to gain a better understanding of how proteins shapeshift. The knowledge can provide valuable insight into stopping and treating diseases.
Published The first assessment of toxic heavy metal pollution in the Southern Hemisphere over the last 2,000 years



Human activity, from burning fossil fuels and fireplaces to the contaminated dust produced by mining, alters Earth's atmosphere in countless ways. Records of these impacts over time are preserved in everlasting polar ice that serves as a sort of time capsule, allowing scientists and historians to link Earth's history with that of human societies. In a new study, ice cores from Antartica show that lead and other toxic heavy metals linked to mining activities polluted the Southern Hemisphere as early as the 13th century.
Published Ancient cities provide key datasets for urban planning, policy and predictions in the Anthropocene



A new study shows how state-of-the-art methods and perspectives from archaeology, history, and palaeoecology are shedding new light on 5,500 years of urban life.
Published Computational method discovers hundreds of new ceramics for extreme environments



If you have a deep-seated, nagging worry over dropping your phone in molten lava, you're in luck. Materials scientists have developed a method for rapidly discovering a new class of materials with heat and electronic tolerances so rugged that they that could enable devices to function at several thousands of degrees Fahrenheit.
Published Are diamonds GaN's best friend? Revolutionizing transistor technology



A research team has fabricated a gallium nitride (GaN) transistor using diamond, which of all natural materials has the highest thermal conductivity on earth, as a substrate, and they succeeded in increasing heat dissipation by more than two times compared with conventional transistors. The transistor is expected to be useful not only in the fields of 5G communication base stations, weather radar, and satellite communications, but also in microwave heating and plasma processing.