Showing 20 articles starting at article 1
Categories: Chemistry: Inorganic Chemistry, Energy: Batteries
Published Kagome superconductor makes waves



Superconductivity theory proposed by physics team validated in international experiment: Cooper pairs display wave-like distribution in Kagome metals, enabling new technological applications like superconducting diodes.
Published AI tackles one of the most difficult challenges in quantum chemistry



New research using neural networks, a form of brain-inspired AI, proposes a solution to the tough challenge of modelling the states of molecules.
Published Physicists shine new light on ultra-fast atomic processes



Scientists report incredibly small time delays in a molecule's electron activity when the particles are exposed to X-rays. To measure these tiny high-speed events, known as attoseconds, researchers used a laser to generate intense X-ray flashes that allowed them to map the inner workings of an atom.
Published Engineers design lookalike drug carrier to evade lung's lines of defense



Managing hard-to-treat respiratory illnesses like asthma and pulmonary fibrosis just got easier if a new drug-carrying molecule is as sneaky as its inventors think.
Published Catalyst for 'one-step' conversion of methane to methanol



Scientists have engineered a highly selective catalyst that can convert methane, a major component of natural gas, into methanol, an easily transportable liquid fuel, in a single, one-step reaction. This direct process for methane-to-methanol conversion runs at a temperature lower than required to make tea and exclusively produces methanol without additional byproducts.
Published Extraterrestrial chemistry with earthbound possibilities



Who are we? Why are we here? We are stardust, the result of chemistry occurring throughout vast clouds of interstellar gas and dust. To better understand how that chemistry could create prebiotic molecules, researchers investigated the role of low-energy electrons created as cosmic radiation traverses through ice particles. Their findings may also inform medical and environmental applications on our home planet.
Published Chalk-based coating creates a cooling fabric



In the scorching heat of summer, anyone who spends time outside could benefit from a cooling fabric. While there are some textiles that reflect the sun's rays or wick heat away, current options require boutique fibers or complex manufacturing processes. But now, demonstrations of a durable chalk-based coating show it can cool the air underneath treated fabric by up to 8 degrees Fahrenheit.
Published First visualization of valence electrons reveals fundamental nature of chemical bonding



The distribution of outermost shell electrons, known as valence electrons, of organic molecules was observed for the first time. As the interactions between atoms are governed by the valence electrons, the findings shine light on the fundamental nature of chemical bonds, with implications for pharmacy and chemical engineering.
Published Quality control: Neatly arranging crystal growth to make fine thin films



Researchers have succeeded in forming metal-organic framework thin films on a substrate while controlling the growth direction of crystals so that they are arranged neatly without gaps. The resulting thin films of unprecedented high quality can be expected for use as optical sensors, optical elements, and transparent gas adsorption sheets.
Published Dormant capacity reserve in lithium-ion batteries detected



Lithium iron phosphate is one of the most important materials for batteries in electric cars, stationary energy storage systems and tools. It has a long service life, is comparatively inexpensive and does not tend to spontaneously combust. Energy density is also making progress. However, experts are still puzzled as to why lithium iron phosphate batteries undercut their theoretical electricity storage capacity by up to 25 per cent in practice.
Published Unlocking the last lanthanide



A team of scientists was recently able to observe how promethium forms chemical bonds when placed in an aqueous solution.
Published Engineered Bacteria make thermally stable plastics similar to polystyrene and PET



Bioengineers around the world have been working to create plastic-producing microbes that could replace the petroleum-based plastics industry. Now, researchers have overcome a major hurdle: getting bacteria to produce polymers that contain ring-like structures, which make the plastics more rigid and thermally stable. Because these molecules are usually toxic to microorganisms, the researchers had to construct a novel metabolic pathway that would enable the E. coli bacteria to both produce and tolerate the accumulation of the polymer and the building blocks it is composed of. The resulting polymer is biodegradable and has physical properties that could lend it to biomedical applications such as drug delivery, though more research is needed.
Published Molecular wires with a twist



Researchers have developed molecular wires with periodic twists. By controlling the lengths of regions between twists, the electrical conductivity of individual polymer chains can be enhanced. This work may lead to novel organic electronics or single-molecule wires.
Published A new reaction to enhance aromatic ketone use in chemical synthesis



Researchers develop a one pot process to transform aromatic ketones to esters, offering advancements in pharmaceutical synthesis and materials science.
Published Investigating the interplay of folding and aggregation in supramolecular polymer systems



Scientists have developed photoresponsive supramolecular polymers that can undergo both intrachain folding and interchain aggregation.
Published Development of a model capable of predicting the cycle lives of high-energy-density lithium-metal batteries



Scientists have developed a model capable of predicting the cycle lives of high-energy-density lithium-metal batteries by applying machine learning methods to battery performance data. The model proved able to accurately estimate batteries' longevity by analyzing their charge, discharge and voltage relaxation process data without relying on any assumption about specific battery degradation mechanisms. The technique is expected to be useful in improving the safety and reliability of devices powered by lithium-metal batteries.
Published Using AI to find the polymers of the future



Finding the next groundbreaking polymer is always a challenge, but now researchers are using artificial intelligence (AI) to shape and transform the future of the field.
Published Evidence stacks up for poisonous books containing toxic dyes



Some of the attractive hues of brightly colored, cloth-bound books from the Victorian era come from dyes that could pose a health risk to readers, collectors or librarians. The latest research on these 'poison books' used three techniques -- including one that hasn't previously been applied to books -- to assess dangerous dyes in a university collection and found some volumes had levels that might be unsafe.
Published Morphable materials: Researchers coax nanoparticles to reconfigure themselves



A view into how nanoscale building blocks can rearrange into different organized structures on command is now possible with an approach that combines an electron microscope, a small sample holder with microscopic channels, and computer simulations, according to a new study.
Published Researchers develop new chemical method to enhance drug discovery



Researchers developed a novel reagent that enhances the precision of drug synthesis. This innovative method introduces a new sulfur fluoride exchange (SuFEx) reagent that allows for highly controlled production of crucial sulfur-based molecules, including sulfinamides, sulfonimidamides and sulfoximines.