Showing 20 articles starting at article 161
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Organic Chemistry, Energy: Batteries
Published This salt battery harvests osmotic energy where the river meets the sea



Estuaries -- where freshwater rivers meet the salty sea -- are great locations for birdwatching and kayaking. In these areas, waters containing different salt concentrations mix and may be sources of sustainable, 'blue' osmotic energy. Researchers report creating a semipermeable membrane that harvests osmotic energy from salt gradients and converts it to electricity. The new design had an output power density more than two times higher than commercial membranes in lab demonstrations.
Published Biophysics: Testing how well biomarkers work



Researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy.
Published A chemical mystery solved -- the reaction explaining large carbon sinks



A mystery that has puzzled the scientific community for over 50 years has finally been solved. A team has discovered that a certain type of chemical reaction can explain why organic matter found in rivers and lakes is so resistant to degradation.
Published Critical minerals recovery from electronic waste



A nontoxic separation process recovers critical minerals from electronic scrap waste.
Published Researchers create artificial cells that act like living cells



Researchers describe the steps they took to manipulate DNA and proteins -- essential building blocks of life -- to create cells that look and act like cells from the body. This accomplishment, a first in the field, has implications for efforts in regenerative medicine, drug delivery systems and diagnostic tools.
Published More economical and sustainable rechargeable batteries



Lithium salts make batteries powerful but expensive. An ultralow-concentration electrolyte based on the lithium salt LiDFOB may be a more economical and more sustainable alternative. Cells using these electrolytes and conventional electrodes have been demonstrated to have high performance. In addition, the electrolyte could facilitate both production and recycling of the batteries.
Published New copper-catalyzed C-H activation strategy



Inspired by what human liver enzymes can do, chemists have developed a new set of copper-catalyzed organic synthesis reactions for building and modifying pharmaceuticals and other molecules. The new reactions are expected to be widely used in drug discovery and optimization, as well as in other chemistry-based industries.
Published The biggest barrier to a vibrant second-hand EV market? Price



As early adopters of electric vehicles (EVs) trade up for the latest models, the used EV market is beginning to mature in the United States. Yet many potential buyers, particularly low-income drivers, are skeptical of EV's conveniences and are put off by the price.
Published Light show in living cells



Observing proteins precisely within cells is extremely important for many branches of research but has been a significant technical challenge -- especially in living cells, as the required fluorescent labeling had to be individually attached to each protein. The research group has now overcome this hurdle: With a method called 'vpCells,' it is possible to label many proteins simultaneously, using five different fluorescent colors.
Published Mess is best: Disordered structure of battery-like devices improves performance



The energy density of supercapacitors -- battery-like devices that can charge in seconds or a few minutes -- can be improved by increasing the 'messiness' of their internal structure. Researchers used experimental and computer modelling techniques to study the porous carbon electrodes used in supercapacitors. They found that electrodes with a more disordered chemical structure stored far more energy than electrodes with a highly ordered structure.
Published From defects to order: Spontaneously emerging crystal arrangements in perovskite halides



A new hybrid layered perovskite featuring elusive spontaneous defect ordering has been found, report scientists. By introducing specific concentrations of thiocyanate ions into FAPbI3 (FA = formamidinium), they observed that ordered columnar defects appeared in the stacked crystalline layers, taking up one-third of the lattice space. These findings could pave the way to an innovative strategy for adjusting the properties of hybrid perovskites, leading to practical advances in optoelectronics and energy generation.
Published Neutrons rule the roost for cage-free lithium ions



Scientists using neutrons set the first benchmark (one nanosecond) for a polymer-electrolyte and lithium-salt mixture. Findings could boost power and safety for lithium batteries.
Published Researchers advance pigment chemistry with moon-inspired reddish magentas



A researcher who made color history in 2009 with a vivid blue pigment has developed durable, reddish magentas inspired by lunar mineralogy and ancient Egyptian chemistry.
Published Pyrite, also known as fool's gold, may contain valuable lithium, a key element for green energy



The technology revolution and development of new renewable energy resources is driving demand for lithium to new heights, but it is not a common mineral. Scientists say they have found lithium in an unexpected place; fool's gold, or pyrite, deposits.
Published Innovative antiviral defense with new CRISPR tool



The rise of RNA viruses like SARS-CoV-2 highlights the need for new ways to fight them. RNA-targeting tools like CRISPR/Cas13 are powerful but inefficient in the cytoplasm of cells, where many RNA viruses replicate. Scientists have devised a solution: Cas13d-NCS. This new molecular tool allows CRISPR RNA molecules that are located within the nucleus of a cell to move to the cytoplasm, making it highly effective at neutralizing RNA viruses. This advancement opens doors for precision medicine and proactive viral defense strategies.
Published A new spin on organic shampoo makes it sudsier, longer lasting



While there's no regulation in the U.S. for what's in organic shampoos, they tend to contain ingredients perceived as safe or environmentally friendly. However, these 'clean' shampoos separate and spoil faster than those made with synthetic stabilizers and preservatives. Now, researchers demonstrate that a simple process -- spinning organic shampoo at high speeds -- improved the final products' shelf lives and ability to clean hair.
Published Nanoscale movies shed light on one barrier to a clean energy future



New research is shedding light on one barrier to a clean energy future: corrosion. Using nanoscale imaging techniques, researchers have captured high-resolution videos of tiny crystals of ruthenium dioxide -- a key ingredient used to produce clean-burning hydrogen -- as they are eaten away by their acidic environment. The research could pave the way to more durable catalysts and dramatically extend the lifetime of devices needed to turn hydrogen green.
Published Discovery brings all-solid-state sodium batteries closer to practical use



Researchers have developed a mass synthesis process for sodium-containing sulfides. Mass synthesis of electrolytes with high conductivity and formability is key to the practical use of all-solid-state sodium batteries, thought to be safer than lithium-ion batteries and less expensive, as sodium is far more plentiful than lithium.
Published New strategy for assessing the applicability of reactions



Chemists show that a machine-based method prevents widespread 'bias' in chemical publications.
Published BESSY II: How pulsed charging enhances the service time of batteries



An improved charging protocol might help lithium-ion batteries to last much longer. Charging with a high-frequency pulsed current reduces aging effects, an international team demonstrated.