Showing 20 articles starting at article 441
< Previous 20 articles Next 20 articles >
Categories: Energy: Batteries, Paleontology: General
Published Progress in alternative battery technology



It is not easy to make batteries cheap, efficient, durable, safe and environmentally friendly at the same time. Researchers have now succeeded in uniting all of these characteristics in zinc metal batteries.
Published Researchers design battery prototype with fiber-shaped cathode



In a new study, researchers made a cathode, or the positive end of a battery, in the shape of a thread-like fiber. The researchers were then able to use the fiber to create a zinc-ion battery prototype that could power a wrist watch.
Published Colorado's spicy ancient history of chili peppers



Recently identified chili pepper fossils from Boulder and Denver museums challenge millions of years of global tomato evolutionary history. Now, that's some spicy science!
Published 360-million-year-old Irish fossil provides oldest evidence of plant self-defense in wood



Scientists have discovered the oldest evidence of plant self-defense in wood in a 360-million-year-old fossil from south-eastern Ireland. Plants can protect their wood from infection and water loss by forming special structures called 'tyloses'. These prevent bacterial and fungal pathogens from getting into the heartwood of living trees and damaging it. However, it was not previously known how early in the evolution of plants woody species became capable of forming such defenses. Published today in Nature Plants is the oldest evidence of tylosis formation from Late Devonian (360-million-year-old) fossil wood from the Hook Head Peninsula area, Co. Wexford, Ireland.
Published Greener batteries



Our modern rechargeable batteries, such as lithium-ion batteries, are anything but sustainable. One alternative is organic batteries with redox-organic electrode materials (OEMs), which can be synthesized from natural 'green' materials. A team has now introduced a new OEM for aqueous organic high-capacity batteries that can be easily and cheaply recycled.
Published Neuroptera: Greater insect diversity in the Cretaceous period



An LMU team has studied the biodiversity of larvae from the insect order neuroptera over the past 100 million years.
Published X-ray analysis sheds new light on prehistoric predator's last meal



We now know more about the diet of a prehistoric creature that grew up to two and a half meters long and lived in Australian waters during the time of the dinosaurs, thanks to the power of x-rays. Researchers used micro-CT scans to peer inside the fossilized stomach remains of a small marine reptile -- a plesiosaur nicknamed 'Eric' after a song from the comedy group Monty Python -- to determine what the creature ate in the lead up to its death.
Published Tiny biobattery with 100-year shelf life runs on bacteria



A tiny biobattery that could still work after 100 years has been developed.
Published Swimming secrets of prehistoric reptiles unlocked by new study



The diverse swimming techniques of the ancient reptiles that ruled the Mesozoic seas have been revealed.
Published Fossils reveal the long-term relationship between feathered dinosaurs and feather-feeding beetles



New fossils in amber have revealed that beetles fed on the feathers of dinosaurs about 105 million years ago, showing a symbiotic relationship of one-sided or mutual benefit.
Published New details of Tully monster revealed



For more than half a century, the Tully monster (Tullimonstrum gregarium), an enigmatic animal that lived about 300 million years ago, has confounded paleontologists, with its strange anatomy making it difficult to classify. Recently, a group of researchers proposed a hypothesis that Tullimonstrum was a vertebrate similar to cyclostomes (jawless fish like lamprey and hagfish). If it was, then the Tully monster would potentially fill a gap in the evolutionary history of early vertebrates. Studies so far have both supported and rejected this hypothesis. Now, using 3D imaging technology, a team in Japan believes it has found the answer after uncovering detailed characteristics of the Tully monster which strongly suggest that it was not a vertebrate. However, its exact classification and what type of invertebrate it was is still to be decided.
Published How can a pollinating insect be recognized in the fossil record?



Insect pollination is a decisive process for the survival and evolution of angiosperm (flowering) plants and, to a lesser extent, gymnosperms (without visible flower or fruit). There is a growing interest in studies on the origins of the relationship between insects and plants, especially in the current context of the progressive decline of pollinating insects on a global scale and its impact on food production. Pollinating insects can be recognized in the fossil record, although to date, there has been no protocol for their differentiation. Fossil pollinators have been found in both rock and amber deposits, and it is in rock deposits that the first evidence of plant pollination by insects is being studied across the globe. But how can we determine which was a true insect pollinator in the past?
Published Learning about what happens to ecology, evolution, and biodiversity in times of mass extinction



Studying mass extinction events from the past can build our understanding of how ecosystems and the communities of organisms within them respond. Researchers are looking to the Late Devonian mass extinction which happened around 370 million years ago to better understand how communities of organisms respond in times of great upheaval.
Published Professor unearths the ancient fossil plant history of Burnaby Mountain



New research led by a paleobotanist provides clues about what plants existed in the Burnaby Mountain area (British Columbia, Canada) 40 million years ago during the late Eocene, when the climate was much warmer than it is today.
Published Apes may have evolved upright stature for leaves, not fruit, in open woodland habitats



Anthropologists have long thought that our ape ancestors evolved an upright torso in order to pick fruit in forests, but new research from the University of Michigan suggests a life in open woodlands and a diet that included leaves drove apes' upright stature.
Published Oldest bat skeletons ever found described from Wyoming fossils



Scientists have described a new species of bat based on the oldest bat skeletons ever recovered. The study on the extinct bat, which lived in Wyoming about 52 million years ago, supports the idea that bats diversified rapidly on multiple continents during this time.
Published Starting small and simple -- key to success for evolution of mammals



The ancestors of modern mammals managed to evolve into one of the most successful animal lineages -- the key was to start out small and simple, a new study reveals.
Published Electrification push will have enormous impacts on critical metals supply chain



The demand for battery-grade lithium, nickel, cobalt, manganese and platinum will climb steeply as vehicle electrification speeds up and nations work to reduce greenhouse gas emissions through mid-century. This surge in demand will also create a variety of economic and supply-chain problems, according to new research.
Published Woolly mammoths evolved smaller ears and woolier coats over the 700,000 years that they roamed the Siberian steppes



A team of researchers compared the genomes of woolly mammoths with modern day elephants to find out what made woolly mammoths unique, both as individuals and as a species. The investigators report that many of the woolly mammoth's trademark features -- including their woolly coats and large fat deposits -- were already genetically encoded in the earliest woolly mammoths, but these and other traits became more defined over the species' 700,000+ year existence. They also identified a gene with several mutations that may have been responsible for the woolly mammoth's miniscule ears.
Published Solid-state lithium-sulfur batteries: Neutrons unveil sluggish charge transport



Solid-state Lithium-Sulfur batteries offer the potential for much higher energy densities and increased safety, compared to conventional lithium-ion batteries. However, the performance of solid-state batteries is currently lacking, with slow charging and discharging being one of the primary causes. Now, a new study shows that sluggish lithium ion transport within a composite cathode is the cause of this slow charging and discharging.