Showing 20 articles starting at article 241

< Previous 20 articles        Next 20 articles >

Categories: Energy: Batteries, Paleontology: Fossils

Return to the site home page

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Energy: Batteries
Published

New designs for solid-state electrolytes may soon revolutionize the battery industry      (via sciencedaily.com)     Original source 

Researchers have announced a major breakthrough in the field of next-generation solid-state batteries. It is believed that their new findings will enable the creation of batteries based on a novel chloride-based solid electrolyte that exhibits exceptional ionic conductivity.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Energy: Batteries Energy: Technology
Published

Making electric vehicles last      (via sciencedaily.com)     Original source 

In the realm of electric vehicles, powered by stored electric energy, the key lies in rechargeable batteries capable of enduring multiple charge cycles. Lithium-ion batteries have been the poster child for this application. However, due to limitations in energy storage capacity and other associated challenges, the focus has shifted to an intriguing alternative known as dual-ion batteries (DIBs).

Biology: Biochemistry Biology: Evolutionary Biology: General Biology: Zoology Paleontology: Fossils Paleontology: General
Published

How the fish got its shoulder      (via sciencedaily.com)     Original source 

A new analysis of the bones and muscles in ancient fish gives new clues about how the shoulder evolved in animals -- including us.

Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry Energy: Alternative Fuels Energy: Batteries Energy: Fossil Fuels Energy: Technology Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Efficient biohybrid batteries      (via sciencedaily.com)     Original source 

Formic acid, which can be produced electrochemically from carbon dioxide, is a promising energy carrier. A research team has now developed a fast-charging hybrid battery system that combines the electrochemical generation of formic acid as an energy carrier with a microbial fuel cell. This novel, fast-charging biohybrid battery system can be used to monitor the toxicity of drinking water, just one of many potential future applications.

Biology: Biochemistry Biology: General Biology: Marine Ecology: Sea Life Offbeat: General Offbeat: Paleontology and Archeology Offbeat: Plants and Animals Paleontology: Fossils Paleontology: General
Published

New species of mosasaur named for Norse sea serpent      (via sciencedaily.com)     Original source 

Scientists have discovered a new species of mosasaur, large, carnivorous aquatic lizards that lived during the late Cretaceous. With 'transitional' traits that place it between two well-known mosasaurs, the new species is named after a sea serpent in Norse mythology, Jormungandr, and the small North Dakota city Walhalla near to where the fossil was found.

Chemistry: Biochemistry Energy: Batteries Energy: Technology Environmental: General
Published

New battery technology could lead to safer, high-energy electric vehicles      (via sciencedaily.com)     Original source 

Researchers studying how lithium batteries fail have developed a new technology that could enable next-generation electric vehicles (EVs) and other devices that are less prone to battery fires while increasing energy storage.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology Paleontology: Fossils Paleontology: General
Published

Genetic methods enable the use of fossil lipids as biomarkers for oxygen-producing primordial bacteria      (via sciencedaily.com)     Original source 

Cyanobacteria are a key species in Earth's history, as they introduced atmospheric oxygen for the first time. The analysis of their evolution therefore provides important insights into the formation of modern aerobic ecosystems. For a long time, a certain type of fossil lipid, so-called 2-methylhopanes, was considered to be an important biomarker for Cyanobacteria in sediments, some of which are hundreds of millions of years old. However, this came into doubt when it turned out that not only Cyanobacteria but also Alphaproteobacteria are genetically capable of producing these lipids.

Environmental: Biodiversity Environmental: Ecosystems Geoscience: Environmental Issues Paleontology: Climate Paleontology: Fossils Paleontology: General
Published

Sediment core analysis supports new epoch characterized by human impact on planet      (via sciencedaily.com)     Original source 

Scientists analyzed open-source data to track vegetation changes across North America since the end of the Pleistocene Epoch, and conclude that humans have had as much of an impact on the landscape as the retreat of the glaciers at the end of the Ice Age. 

Anthropology: Early Humans Anthropology: General Archaeology: General Biology: Biochemistry Biology: General Ecology: Animals Offbeat: General Offbeat: Paleontology and Archeology Offbeat: Plants and Animals Paleontology: Fossils
Published

Origin of ancient mummified baboons found in Egypt      (via sciencedaily.com)     Original source 

Primatologists are using genetic analysis to determine the geographic origin of ancient mummified baboons found in Egypt. The team finds evidence that the two legendary trading regions of Punt and Adulis may have been the same place separated by a thousand years of history.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Energy: Batteries
Published

Cathode active materials for lithium-ion batteries could be produced at low temperatures      (via sciencedaily.com)     Original source 

Layered lithium cobalt oxide, a key component of lithium-ion batteries, has been synthesized at temperatures as low as 300°C and durations as short as 30 minutes.

Chemistry: Inorganic Chemistry Energy: Batteries
Published

A step on the way to solid-state batteries      (via sciencedaily.com)     Original source 

A lithium ceramic could act as a solid electrolyte in a more powerful and cost-efficient generation of rechargeable lithium-ion batteries. The challenge is to find a production method that works without sintering at high temperatures. A research team has now introduced a sinter-free method for the efficient, low-temperature synthesis of these ceramics in a conductive crystalline form.

Archaeology: General Biology: Biochemistry Biology: Marine Biology: Zoology Ecology: Sea Life Offbeat: General Offbeat: Paleontology and Archeology Offbeat: Plants and Animals Paleontology: Fossils
Published

Ancient sea monster remains reveal oldest mega-predatory pliosaur      (via sciencedaily.com)     Original source 

The fossils of a 170-million-year-old ancient marine reptile from the Age of Dinosaurs have been identified as the oldest-known mega-predatory pliosaur -- a group of ocean-dwelling reptiles closely related to the famous long-necked plesiosaurs. The findings are rare and add new knowledge to the evolution of plesiosaurs.

Biology: Marine Ecology: Endangered Species Ecology: Extinction Ecology: Nature Ecology: Sea Life Paleontology: Fossils Paleontology: General
Published

Waves of change: How sea-levels and climate altered the marine ecosystems at the South Pole 390-385 million years ago      (via sciencedaily.com)     Original source 

New research reveals a chain of environmental disasters. These took place in what is today's South Africa, during an ancient time period called the Early-Middle Devonian. The crises led to the extinction of a unique group of marine animals called the Malvinoxhosan biota.

Anthropology: Cultures Anthropology: General Archaeology: General Paleontology: Fossils
Published

Researchers identify the oldest pieces of Baltic amber found on the Iberian Peninsula: imports began over 5,000 years ago      (via sciencedaily.com)     Original source 

Baltic amber is a luxury material used in jewellery and handicrafts all over the world. Researchers have shown that Baltic amber arrived on the Iberian Peninsula at least in the 4th millennium BC, more than a millennium earlier than previously thought.

Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry Energy: Batteries Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

A miniature magnetic resonance imager made of diamond      (via sciencedaily.com)     Original source 

The development of tumors begins with miniscule changes within the body's cells; ion diffusion at the smallest scales is decisive in the performance of batteries. Until now the resolution of conventional imaging methods has not been high enough to represent these processes in detail. A research team has now developed diamond quantum sensors which can be used to improve resolution in magnetic imaging.

Chemistry: Biochemistry Chemistry: General Energy: Batteries Energy: Technology Environmental: General Geoscience: Geochemistry
Published

Cobalt-free battery for cleaner, greener power      (via sciencedaily.com)     Original source 

High-capacity and reliable rechargeable batteries are a critical component of many devices and even modes of transport. They play a key role in the shift to a greener world. A wide variety of elements are used in their production, including cobalt, the production of which contributes to some environmental, economic, and social issues. A team now presents a viable alternative to cobalt which in some ways can outperform state-of-the-art battery chemistry. It also survives a large number of recharge cycles, and the underlying theory can be applied to other problems.

Geoscience: Earth Science Geoscience: Geochemistry Geoscience: Geography Geoscience: Geology Paleontology: Fossils
Published

Ancient diamonds shine light on the evolution of Earth      (via sciencedaily.com)     Original source 

Formed millions to billions of years ago, diamonds can shine light into the darkest and oldest parts of the Earth's mantle. The analysis of ancient, superdeep diamonds dug up from mines in Brazil and Western Africa, has exposed new processes of how continents evolved and moved during the early evolution of complex life on Earth. These diamonds that were formed between 650 and 450 million years ago on the base of the supercontinent Gondwana, were analysed by an international team of experts, and have shown how supercontinents such as Gondwana were formed, stabilised, and how they move around the planet.