Showing 20 articles starting at article 41
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Organic Chemistry, Energy: Nuclear
Published A new way to make element 116 opens the door to heavier atoms



Researchers have successfully made super-heavy element 116 using a beam of titanium-50. That milestone sets the team up to attempt making the heaviest element yet: 120.
Published Nanoscopic imaging aids in understanding protein, tissue preservation in ancient bones



A pilot study shows that nanoscopic 3-D imaging of ancient bone not only provides further insight into the changes soft tissues undergo during fossilization, it also has potential as a fast, practical way to determine which specimens are likely candidates for ancient DNA and protein sequence preservation.
Published Maximizing hydrogen peroxide formation during water electrolysis



When water is split electrolytically, the result is typically hydrogen -- and 'useless' oxygen. Instead of oxygen, you can also produce hydrogen peroxide, which is required for many branches of industry. This, however, requires certain reaction conditions.
Published Waste Styrofoam can now be converted into polymers for electronics



A new study describes a chemical reaction that can convert Styrofoam into a high-value conducting polymer known as PEDOT:PSS. Researchers also noted that the upgraded plastic waste can be successfully incorporated into functional electronic devices, including silicon-based hybrid solar cells and organic electrochemical transistors.
Published Chemists design novel method for generating sustainable fuel



Chemists have been working to synthesize high-value materials from waste molecules for years.
Published Come closer: Titanium-48's nuclear structure changes when observed at varying distances



Researchers have found that titanium-48 changes from a shell model structure to an alpha-cluster structure depending on the distance from the center of the nucleus. The results upend the conventional understanding of nuclear structure and are expected to provide clues to the Gamow theory on the alpha-decay process that occurs in heavy nuclei, which has not been solved for nearly 100 years.
Published New humidity-driven membrane to remove carbon dioxide from the air



A new ambient-energy-driven membrane that pumps carbon dioxide out of the air has been developed by researchers.
Published Converting wastewater to fertilizer with fungal treatment



Creating fertilizers from organic waste can help reduce the consumption of fossil fuels and promote sustainable production. One way of doing this is through hydrothermal liquefaction (HTL), which converts biomass into biocrude oil through a high-temperature, high-pressure process. Two studies explore the use of a fungal treatment to convert the leftover wastewater into fertilizer for agricultural crops.
Published Microbes found to destroy certain 'forever chemicals'



An environmental engineering team has discovered that specific bacterial species can cleave the strong fluorine-to-carbon bond certain kinds of 'forever chemical' water pollutants, offering promise for low-cost treatments of contaminated drinking water.
Published A new addition to the CRISPR toolbox: Teaching the gene scissors to detect RNA



CRISPR-Cas systems, defense systems in bacteria, have become a plentiful source of technologies for molecular diagnostics. Researchers have now expanded this extensive toolbox further. Their novel method, called PUMA, enables the detection of RNA with Cas12 nucleases, which naturally target DNA. PUMA promises a wide range of applications and high accuracy.
Published Transporting precious cargo using the body's own delivery system



Delivery systems in body continuously move materials between cells. Hijacking these systems allowed scientists to improve loading and delivery of therapeutic proteins. Biophysical principles could be used to enable more cost-effective loading of biological cargo into cell-derived delivery systems. Engineered molecules loaded up to 240 times more protein than other loading methods.
Published Crystals from radioactive metal actinium



Researchers grew crystals containing actinium and illuminated them with X-rays to learn how the radioactive metal binds with other elements. That information could help design better cancer treatments.
Published A better way to make RNA drugs



RNA drugs are the next frontier of medicine, but manufacturing them requires an expensive and labor-intensive process that limits production and produces metric tons of toxic chemical waste. Researchers report a new, enzyme-based RNA synthesis method that can produce strands of RNA with both natural and modified nucleotides without the environmental hazards.
Published Scientists create computer program that 'paints' the structure of molecules in the style of Piet Mondrian



Scientists have created a computer program that 'paints' the structure of molecules in the style of famous Dutch artist, Piet Mondrian. Researchers are opening eyes and minds to the beauty of molecular structure, as well as posing new questions about the form and function of the molecules themselves.
Published Nanoplastics and 'forever chemicals' disrupt molecular structures, functionality



Researchers have made significant inroads in understanding how nanoplastics and per- and polyfluoroalkyl substances (PFAS) -- commonly known as forever chemicals -- disrupt biomolecular structure and function. The work shows that the compounds can alter proteins found in human breast milk and infant formulas -- potentially causing developmental issues downstream.
Published Quadrupolar nuclei measured by zero-field NMR



Researchers have achieved a breakthrough in zero-field nuclear magnetic resonance spectroscopy, paving the way towards benchmarking quantum chemistry calculations.
Published Atlas of proteins reveals inner workings of cells



Researchers discover how proteins behave inside cells using AI, which has the potential to guide drug design.
Published Researchers show promising material for solar energy gets its curious boost from entropy



Researchers discovered a microscopic mechanism that solves in part the outstanding performance achieved by a new class of organic semiconductors known as non-fullerene acceptors (NFAs).
Published Pinpointing coal plants to convert to nuclear energy, considering both practicality and community support



An assessment ranks the feasibility of converting 245 operational coal power plants in the U.S. into advanced nuclear reactors, providing valuable insights for policymakers and utilities to meet decarbonization goals, according to a new study.
Published Chemistry inspired by one-pot cooking



Is it possible to create a new class of materials from very different substances using the 'one-pot synthesis' approach? Chemists explain how they enable the synthesis of such novel materials.