Showing 20 articles starting at article 141
< Previous 20 articles Next 20 articles >
Categories: Anthropology: Early Humans, Energy: Nuclear
Published To boost supply chains, scientists are looking at ways to recover valuable materials from water



Researchers are exploring the different ways of harvesting materials from water.
Published First hominin muscle reconstruction shows 3.2 million-year-old 'Lucy' could stand as erect as we can



Digital modelling of legendary fossil's soft tissue suggests Australopithecus afarensis had powerful leg and pelvic muscles suited to tree dwelling, but knee muscles that allowed fully erect walking.
Published Remains at Crenshaw site are local, ancestors of Caddo



Hundreds of human skulls and mandibles recovered from the Crenshaw site in southwest Arkansas are the remains of ancestors of the Caddo Nation and not foreign enemies, according to a new study.
Published New method traces ancestry of hybrid plants and animals



Hybrid plants and animals have complicated genomes. A biologist has discovered a way to reveal their parent species.
Published Lingering effects of Neanderthal DNA found in modern humans



Recent scientific discoveries have shown that Neanderthal genes comprise some 1 to 4% of the genome of present-day humans whose ancestors migrated out of Africa, but the question remained open on how much those genes are still actively influencing human traits -- until now.
Published Life before air conditioning: Curly hair kept early humans cool



Curly hair does more than simply look good -- it may explain how early humans stayed cool while conserving water, according to researchers who studied the role human hair textures play in regulating body temperature. The findings can shed light on an evolutionary adaptation that enabled the human brain to grow to modern-day sizes.
Published Calculation shows why heavy quarks get caught up in the flow



Theorists have calculated how quickly a melted soup of quarks and gluons -- the building blocks of protons and neutrons -- transfers its momentum to heavy quarks. The calculation will help explain experimental results showing heavy quarks getting caught up in the flow of matter generated in heavy ion collisions.
Published Remains of an extinct world of organisms discovered



Newly discovered biomarker signatures point to a whole range of previously unknown organisms that dominated complex life on Earth about a billion years ago. They differed from complex eukaryotic life as we know it, such as animals, plants and algae in their cell structure and likely metabolism, which was adapted to a world that had far less oxygen in the atmosphere than today.
Published Under pressure: Foundations of stellar physics and nuclear fusion investigated



Research using the world's most energetic laser has shed light on the properties of highly compressed matter -- essential to understanding the structure of giant planets and stars, and to develop controlled nuclear fusion, a process that could harvest carbon-free energy.
Published Geneticists discover hidden 'whole genome duplication' that may explain why some species survived mass extinctions



Geneticists have unearthed a major event in the ancient history of sturgeons and paddlefish that has significant implications for the way we understand evolution. They have pinpointed a previously hidden 'whole genome duplication' (WGD) in the common ancestor of these species, which seemingly opened the door to genetic variations that may have conferred an advantage around the time of a major mass extinction some 200 million years ago.
Published Keeping time with an atomic nucleus



Nuclear clocks could allow scientists to probe the fundamental forces of the universe in the future. Researchers have made a crucial advance in this area as part of an international collaboration.
Published Demystifying vortex rings in nuclear fusion, supernovae



Better understanding the formation of swirling, ring-shaped disturbances -- known as vortex rings -- could help nuclear fusion researchers compress fuel more efficiently, bringing it closer to becoming a viable energy source. A mathematical model linking these vortices with more pedestrian types, like smoke rings, could help engineers control their behavior in power generation and more.
Published Humanity's earliest recorded kiss occurred in Mesopotamia 4,500 years ago



Written sources from Mesopotamia suggest that kissing in relation to sex was practiced by the peoples of the ancient Middle East 4,500 years ago.
Published Homo sapiens likely arose from multiple closely related populations



In testing the genetic material of current populations in Africa and comparing against existing fossil evidence of early Homo sapiens populations there, researchers have uncovered a new model of human evolution -- overturning previous beliefs that a single African population gave rise to all humans.
Published Simulation provides images from the carbon nucleus



What does the inside of a carbon atom's nucleus look like? A new study provides a comprehensive answer to this question. In the study, the researchers simulated all known energy states of the nucleus. These include the puzzling Hoyle state. If it did not exist, carbon and oxygen would only be present in the universe in tiny traces. Ultimately, we therefore also owe it our own existence.
Published Researcher uses mammal DNA to zoom into the human genome with unprecedented resolution



Scientists have precisely identified base pairs of the human genome that remained consistent over millions of years of mammalian evolution, and which play a crucial role in human disease. The team analyzed the genomes of 240 mammals, including humans and identified base pairs that were 'constrained' -- meaning they remained generally consistent -- across mammal species over the course of evolution. The most constrained base pairs in mammals were over seven times more likely to be causal for human disease and complex trait, and over 11 times more likely when researchers looked at the most constrained base pairs in primates alone.
Published Human ancestors preferred mosaic landscapes and high ecosystem diversity



A new study finds that early human species adapted to mosaic landscapes and diverse food resources, which would have increased our ancestor's resilience to past shifts in climate.
Published Evidence of Ice Age human migrations from China to the Americas and Japan



Scientists have used mitochondrial DNA to trace a female lineage from northern coastal China to the Americas. By integrating contemporary and ancient mitochondrial DNA, the team found evidence of at least two migrations: one during the last ice age, and one during the subsequent melting period. Around the same time as the second migration, another branch of the same lineage migrated to Japan, which could explain Paleolithic archeological similarities between the Americas, China, and Japan.
Published Nose shape gene inherited from Neanderthals



Humans inherited genetic material from Neanderthals that affects the shape of our noses, finds a new study.
Published Scientists recover an ancient woman's DNA from a 20,000-year-old pendant



An international research team has for the first time successfully isolated ancient human DNA from a Paleolithic artefact: a pierced deer tooth discovered in Denisova Cave in southern Siberia. To preserve the integrity of the artefact, they developed a new, nondestructive method for isolating DNA from ancient bones and teeth. From the DNA retrieved they were able to reconstruct a precise genetic profile of the woman who used or wore the pendant, as well as of the deer from which the tooth was taken. Genetic dates obtained for the DNA from both the woman and the deer show that the pendant was made between 19,000 and 25,000 years ago. The tooth remains fully intact after analysis, providing testimony to a new era in ancient DNA research, in which it may become possible to directly identify the users of ornaments and tools produced in the deep past.