Showing 20 articles starting at article 461

< Previous 20 articles        Next 20 articles >

Categories: Chemistry: General, Energy: Nuclear

Return to the site home page

Biology: Microbiology Chemistry: General Physics: Optics
Published

Researchers control biofilm formation using optical traps      (via sciencedaily.com)     Original source 

Researchers showed that biofilm formation can be controlled with laser light in the form of optical traps. The findings could allow scientists to harness biofilms for various bioengineering applications.

Chemistry: General Engineering: Graphene Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Coal-based product could replace sand in concrete      (via sciencedaily.com)     Original source 

A new study found that graphene derived from metallurgical coke, a coal-based product, through flash Joule heating could serve not only as a reinforcing additive in cement but also as a replacement for sand in concrete.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Energy: Technology
Published

How to shift gears in a molecular motor      (via sciencedaily.com)     Original source 

Scientists have long strived to develop artificial molecular motors that can convert energy into directed motion. Researchers have now presented a solution to a challenging problem: how motion can be transferred in a controlled manner from one place to another through a 'molecular gear'. Molecular motors have the potential for use in, for example, energy storage applications and medicine.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry
Published

Deep learning reveals molecular secrets of explosive perchlorate salts      (via sciencedaily.com)     Original source 

Perchlorate compounds are known for their explosive nature. To understand what makes these compounds so explosive, a team of researchers developed a novel deep learning-based method that analyses their crystal structure and molecular interactions to elucidate their physical properties. This novel technique avoids dangerous laboratory-based experiments and uses data to study the nature of compounds. Overall, the study marks a significant step towards data-driven and artificial intelligence-based methods for chemical research.

Biology: Biochemistry Biology: Cell Biology Biology: Developmental Biology: General Biology: Microbiology Biology: Molecular Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Offbeat: General Offbeat: Plants and Animals
Published

Cellular scaffolding rewired to make microscopic railways      (via sciencedaily.com)     Original source 

Researchers were able to control the growth of thin, branching networks that support cellular structure and help cells function. The networks, called microtubules, can exert force and precisely transport chemicals at a subcellular level.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Computer Science: Artificial Intelligence (AI) Engineering: Robotics Research
Published

Autonomous synthesis robot uses AI to speed up chemical discovery      (via sciencedaily.com)     Original source 

Chemists have developed an autonomous chemical synthesis robot with an integrated AI-driven machine learning unit. Dubbed 'RoboChem', the benchtop device can outperform a human chemist in terms of speed and accuracy while also displaying a high level of ingenuity. As the first of its kind, it could significantly accelerate chemical discovery of molecules for pharmaceutical and many other applications.

Chemistry: Thermodynamics Energy: Alternative Fuels Energy: Batteries Energy: Nuclear Energy: Technology Physics: General
Published

Liquid lithium on the walls of a fusion device helps the plasma within maintain a hot edge      (via sciencedaily.com)     Original source 

Emerging research suggests it may be easier to use fusion as a power source if liquid lithium is applied to the internal walls of the device housing the plasma. Past experiments studied solid lithium coatings and found they could enhance a plasma. The researchers were pleased they could yield similar results with liquid lithium, as it's better suited for use in a large-scale tokamak.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: General
Published

Hacking DNA to make next-gen materials      (via sciencedaily.com)     Original source 

Scientists have developed a universal method for producing a wide variety of designed metallic and semiconductor 3D nanostructures -- the potential base materials for next-generation semiconductor devices, neuromorphic computing, and advanced energy applications. The new method, which uses a 'hacked' form of DNA that instructs molecules to organize themselves into targeted 3D patterns, is the first of its kind to produce robust nanostructures from multiple material classes.

Chemistry: Biochemistry Chemistry: General Energy: Batteries Energy: Technology Environmental: General Geoscience: Geochemistry
Published

Fast-charging lithium battery seeks to eliminate 'range anxiety'      (via sciencedaily.com)     Original source 

Engineers have created a new lithium battery that can charge in under five minutes -- faster than any such battery on the market -- while maintaining stable performance over extended cycles of charging and discharging.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry Ecology: Endangered Species Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

New study unveils how plants control the production of reactive oxygen species      (via sciencedaily.com)     Original source 

Reactive oxygen species (ROS), though generally regarded as toxic byproducts of biological processes, serve many important functions in plants. However, the precise mechanism that plants use to regulate the production of ROS remains elusive. In a recent study, researchers clarified how an important ROS-generating enzyme is activated, revealing mechanisms likely conserved across all land plants. Their findings could pave the way for breakthroughs in agricultural and environmental remediation tools.

Energy: Nuclear Physics: General Physics: Quantum Physics
Published

Gravity helps show strong force strength in the proton      (via sciencedaily.com)     Original source 

New research conducted by nuclear physicists is using a method that connects theories of gravitation to interactions among the smallest particles of matter. The result is insight into the strong force, a powerful mediator of particle interactions in the subatomic realm. The research has revealed, for the first time, a snapshot of the distribution of the shear strength of the strong force inside the proton -- or how strong an effort must be to overcome the strong force to move an object it holds in its grasp. At its peak, the nuclear physicists found that a force of over four metric tons would be required to overcome the binding power of the strong force.

Chemistry: General
Published

Neutrons reveal 'atomic rings' and help predict glass performance      (via sciencedaily.com)     Original source 

Researchers found that understanding the stability of the rings of atoms in glass materials can help them predict the performance of glass products. This capability is important because the most widely used glass is silicate glass, which consists of different sizes of atomic rings connected in three dimensions.

Chemistry: Biochemistry Chemistry: General Energy: Technology Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Water, water everywhere and now we may have drops to drink      (via sciencedaily.com)     Original source 

Researchers have achieved a major breakthrough in Redox Flow Desalination (RFD), an emerging electrochemical technique that can turn seawater into potable drinking water and also store affordable renewable energy.

Chemistry: General Energy: Batteries Energy: Fossil Fuels Energy: Technology Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Major climate benefits with electric aircraft      (via sciencedaily.com)     Original source 

Researchers have performed the world's first life cycle assessment (LCA) of an existing, two-seater, all-electric aircraft, with a direct comparison to an equivalent fossil fuel-powered one. According to the study, after just one quarter of the expected lifespan of the electric aircraft, the climate impact is lower than that of the fossil fuel-based aircraft, provided that green electricity is used. The downside, however, is increased mineral resource scarcity.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Alternative Fuels
Published

New sustainable method for creating organic semiconductors      (via sciencedaily.com)     Original source 

Researchers have developed a new, more environmentally friendly way to create conductive inks for use in organic electronics such as solar cells, artificial neurons, and soft sensors. The findings pave the way for future sustainable technology.

Chemistry: General Chemistry: Inorganic Chemistry
Published

New reagent improves the process of making sulfur-containing compounds that may be used in medicines      (via sciencedaily.com)     Original source 

Researchers describe their development of a new reagent that allows a more efficient approach to make sulfoximines, sulfonimidoyl fluorides and sulfonimidamides that may be used in medicines.

Chemistry: General Chemistry: Inorganic Chemistry Physics: General Physics: Optics
Published

Scientists advance affordable, sustainable solution for flat-panel displays and wearable tech      (via sciencedaily.com)     Original source 

Scientists have developed 'supramolecular ink,' a new 3D-printable OLED (organic light-emitting diode) material made of inexpensive, Earth-abundant elements instead of costly scarce metals. The advance could enable more affordable and environmentally sustainable OLED flat-panel displays as well as 3D-printable wearable technologies and lighting.