Showing 20 articles starting at article 741
< Previous 20 articles Next 20 articles >
Categories: Chemistry: General, Energy: Nuclear
Published A step closer to digitizing the sense of smell: Model describes odors better than human panelists


A main crux of neuroscience is learning how our senses translate light into sight, sound into hearing, food into taste, and texture into touch. Smell is where these sensory relationships get more complex and perplexing. To address this question, a research team are investigating how airborne chemicals connect to odor perception in the brain. They discovered that a machine-learning model has achieved human-level proficiency at describing, in words, what chemicals smell like.
Published Growing triple-decker hybrid crystals for lasers


By controlling the arrangement of multiple inorganic and organic layers within crystals using a novel technique, researchers have shown they can control the energy levels of electrons and holes (positive charge carriers) within a class of materials called perovskites. This tuning influences the materials' optoelectronic properties and their ability to emit light of specific energies, demonstrated by their ability to function as a source of lasers.
Published Taking photoclick chemistry to the next level


Researchers have been able to substantially improve photoclick chemistry. They were able to boost the reactivity of the photoclick compound in the popular PQ-ERA reaction through strategic molecular substitution. They now report a superb photoreaction quantum yield, high reaction rates and notable oxygen tolerance.
Published Surpassing the human eye: Machine learning image analysis rapidly determines chemical mixture composition


Machine learning model provides quick method for determining the composition of solid chemical mixtures using only photographs of the sample.
Published Direct formation of sulfuric acid in the atmosphere


In the atmosphere, gaseous sulfuric acid can form particles that influence the physical properties of clouds. Thus, the formation of sulfuric acid in the gas phase directly affects the radiative forcing and Earth's climate. In addition to the known formation from sulfur dioxide, researchers have now been able to demonstrate through experiments that there is another formation pathway that has been speculated about for decades. Sulfuric acid in the atmosphere can also be formed directly by the oxidation of organic sulfur compounds. This new production pathway can be responsible for up to half of the gaseous sulfuric acid formation over the oceans and is thus of high importance for climate projections -- especially over the oceans of the Southern Hemisphere.
Published Exploring light neutron-rich nuclei: First observation of oxygen-28


The neutron-rich oxygen isotopes oxygen-27 and oxygen-28 exist as very short-lived resonances, report scientists based on the first observation of their decay into oxygen-24 and three and four neutrons, respectively. Notably, the oxygen-28 nucleus is found not to be 'doubly magic' as expected in the standard shell-model picture. This study provides valuable insights into the nuclear structure.
Published New 'droplet battery' could pave the way for miniature bio-integrated devices


Researchers have developed a miniature battery that could be used to power tiny devices integrated into human tissues. The design uses an ionic gradient across a chain of droplets -- inspired by how electric eels generate electricity. The device was able to regulate the biological activity of human neurons. This could open the way to the development of tiny bio-integrated devices, with a range of applications in biology and medicine.
Published Overcoming the challenges to synthesising iron--sulfur proteins outside the glovebox


Iron--sulfur (Fe--S) proteins, essential to all life forms, are difficult to synthesise due to the complicated molecular machinery involved and sensitivity of Fe--S clusters to oxygen. In a new study, a team of researchers devised an innovative protocol for synthesising mature Fe--S proteins, by bringing together a recombinant sulfur assimilation (SUF) system and an oxygen-scavenging system, thereby, paving the way for new technologies and a better understanding of the evolution of life.
Published A first for ferrocene: Organometallic capsule with unusual charge-transfer interactions


An organometallic capsule that can reversibly assemble and disassemble in response to chemical stimuli was recently developed by chemists. Comprising ferrocene-based bent amphiphiles, this new capsule can act as a host for various types of guest molecules, such as electron acceptors and dyes. Thanks to the controllable release of its cargo, the capsule would find applications in catalysis, medicine, and biotechnology.
Published Direct power generation from methylcyclohexane using solid oxide fuel cells



Methylcyclohexane is very promising as a hydrogen carrier that can safely and efficiently transport and store hydrogen. However, the dehydrogenation process using catalysts has issues due to its durability and large energy loss. Recently, researchers have succeeded in using solid oxide fuel cells to generate electricity directly from methylcyclohexane and recover toluene for reuse. This research is expected to not only reduce energy requirements but also explore new chemical synthesis by fuel cells.
Published Enhanced chemical weathering: A solution to the climate crisis?



Could blending of crushed rock with arable soil lower global temperatures? Researchers study global warming events from 40 and 56 million years ago to find answers.
Published Researchers develop a unique quantum mechanical approach to determining metal ductility


A team of scientists developed a new quantum-mechanics-based approach to predict metal ductility. The team demonstrated its effectiveness on refractory multi-principal-element alloys.
Published Nuclear spin's impact on biological processes uncovered


Researchers have discovered that nuclear spin influences biological processes, challenging long-held beliefs. They found that certain isotopes behave differently in chiral environments, affecting oxygen dynamics and transport. This breakthrough could advance biotechnology, quantum biology, and NMR technology, with potential applications in isotope separation and medical imaging.
Published Fusion model hot off the wall


Heat load mitigation is critical to extending the lifetime of future fusion device. Researchers have found a way to explain the rotational temperatures measured in three different experimental fusion devices in Japan and the United States. Their model evaluates the surface interactions and electron-proton collisions of hydrogen molecules.
Published A non-covalent bonding experience


Putting a suite of new materials synthesis and characterization methods to the test, a team of scientists has developed 14 organic-inorganic hybrid materials, seven of which are entirely new.
Published Unlocking the power of molecular crystals: A possible solution to nuclear waste


A team researchers has discovered molecular crystals capable of capturing iodine -- one of the most common radioactive fission products -- and other pollutants. The versatile crystals could be used for nuclear waste management and other energy-related applications and move the world closer to a net-zero future.
Published 'Stunning' discovery: Metals can heal themselves



Researchers announce the first observation of a self-healing metal. If harnessed, the newly discovered phenomenon could someday lead to engines, bridges and airplanes that reverse damage caused by wear and tear, making them safer and longer-lasting.
Published Search for dark matter



Scientists have applied a promising new method to search for dark matter particles in a particle accelerator. The method is based on the observation of the spin polarization of a particle beam in a storage ring COSY.
Published Public support hydrogen and biofuels to decarbonize global shipping



New research into public attitudes towards alternative shipping fuels shows public backing for biofuel and hydrogen. The study also found that nuclear was preferred to the heavy fuel oil (HFO) currently used in the global shipping industry, although both were perceived negatively. Ammonia had the least public support.
Published New driver for shapes of small quark-gluon plasma drops?



New measurements of how particles flow from collisions of different types of particles at the Relativistic Heavy Ion Collider (RHIC) have provided new insights into the origin of the shape of hot specks of matter generated in these collisions. The results may lead to a deeper understanding of the properties and dynamics of this form of matter, known as a quark-gluon plasma (QGP).