Showing 20 articles starting at article 901
< Previous 20 articles Next 20 articles >
Categories: Chemistry: General, Energy: Nuclear
Published Uracil found in Ryugu samples


Samples from the asteroid Ryugu collected by the Hayabusa2 mission contain nitrogenous organic compounds, including the nucleobase uracil, which is a part of RNA.
Published Synthesis gas and battery power from sunlight energy


Plants use photosynthesis to harvest energy from sunlight. Now researchers have applied this principle as the basis for developing new sustainable processes which in the future may produce syngas (synthetic gas) for the large-scale chemical industry and be able to charge batteries.
Published Batteries: Passivation layer mystery solved


In our daily lives, lithium-ion batteries have become indispensable. They function only because of a passivation layer that forms during their initial cycle. As researchers found out via simulations, this solid electrolyte interphase develops not directly at the electrode but aggregates in the solution. Their findings allow the optimization of the performance and lifetime of future batteries.
Published Molecular teamwork makes the organic dream work


Molecular engineers have triggered a domino-like structural transition in an organic semiconductor. The energy- and time-saving phenomenon may enhance the performance of smartwatches, solar cells, and other organic electronics.
Published 'Inkable' nanomaterial promises big benefits for bendable electronics


An international team of scientists is developing an inkable nanomaterial that they say could one day become a spray-on electronic component for ultra-thin, lightweight and bendable displays and devices.
Published High-energy-density, long life-cycle rechargeable lithium metal batteries


Research shows promise for developing high-energy-density rechargeable lithium-metal batteries and addressing the electrochemical oxidation instability of ether-based electrolytes.
Published Nitrate can release uranium into groundwater


A team has experimentally confirmed that nitrate, a compound common in fertilizers and animal waste, can help transport naturally occurring uranium from the underground to groundwater. The new research backs a previous study showing that aquifers contaminated with high levels of nitrate -- including the High Plains Aquifer residing beneath Nebraska -- also contain uranium concentrations far exceeding a threshold set by the Environmental Protection Agency. Uranium concentrations above that EPA threshold have been shown to cause kidney damage in humans, especially when regularly consumed via drinking water.
Published Scientists find a common thread linking subatomic color glass condensate and massive black holes


Atomic nuclei accelerated close to the speed of light become dense walls of gluons known as color glass condensate (CGC). Recent analysis shows that CGC shares features with black holes, enormous conglomerates of gravitons that exert gravitational force across the universe. Both gluons in CGC and gravitons in black holes are organized in the most efficient manner possible for each system's energy and size.
Published Recycling: Researchers separate cotton from polyester in blended fabric


Researchers found they could separate blended cotton and polyester fabric using enzymes -- nature's tools for speeding chemical reactions. Ultimately, they hope their findings will lead to a more efficient way to recycle the fabric's component materials, thereby reducing textile waste.
Published Can synthetic polymers replace the body's natural proteins?


Scientists developing new biomaterials often try to mimic the body's natural proteins, but a chemist shows that simpler polymers -- based on a handful of plastic building blocks -- also work well. Using AI, her team was able to design polymer mixtures that replicate simple protein functions within biological fluids. The random heteropolymers dissolve and stabilize proteins and can support cells' normal protein-making machinery. The technique could speed the design of materials for biomedical applications.
Published Cans or bottles: What's better for a fresh, stable beer?


The flavor of beer begins to change as soon as it's packaged, prompting a debate among afficionados: Does the beverage stay fresher in a bottle or a can? Now, researchers report that the answer is, well, complicated, and depends on the type of beer. An amber ale stayed fresher in bottles, whereas container choice made much less difference to the stability of an India Pale Ale (IPA).
Published Better simulations of neutron scattering


Tripoli-4® is a tool used by researchers to simulate the behaviors of interacting neutrons in 3D space. Recently, researchers have developed eTLE: a next-event simulator which aims to increase Tripoli-4®'s precision using Monte Carlo simulations. New research implements and validates eTLE's reliability.
Published Electronic skin as flexible as crocodile skin


A research team has developed a crocodile-skin-inspired omnidirectionally stretchable pressure sensor.
Published Nano cut-and-sew: New method for chemically tailoring layered nanomaterials could open pathways to designing 2D materials on demand


A new process that lets scientists chemically cut apart and stitch together nanoscopic layers of two-dimensional materials -- like a tailor altering a suit -- could be just the tool for designing the technology of a sustainable energy future. Researchers have developed a method for structurally splitting, editing and reconstituting layered materials, called MAX phases and MXenes, with the potential of producing new materials with very unusual compositions and exceptional properties.
Published New approach to harvesting aerial humidity with organic crystals


Researchers have reported a novel method of harvesting water from naturally occurring sources such as fog and dew.
Published Modelling superfast processes in organic solar cell material


In organic solar cells, carbon-based polymers convert light into charges that are passed to an acceptor. Scientists have now calculated how this happens by combining molecular dynamics simulations with quantum calculations and have provided theoretical insights to interpret experimental data.
Published Filming proteins in motion


Proteins are the heavy-lifters of biochemistry. These beefy molecules act as building blocks, receptors, processors, couriers and catalysts. Naturally, scientists have devoted a lot of research to understanding and manipulating proteins.
Published Researchers control the degree of twist in nanostructured particles


Micron-sized 'bow ties,' self-assembled from nanoparticles, form a variety of different curling shapes that can be precisely controlled, a research team has shown.
Published Spatial patterns in distribution of galaxies


In an unlikely pairing, a chemist and an astrophysicist applied the tools of statistical mechanics to find similarities in spatial patterns across length scales.
Published Microneedle-based drug delivery technique for plants


The agriculture industry is under pressure to adopt sustainable and precise agricultural practices that enable more efficient use of resources due to worsening environmental conditions resulting from climate change, an ever-expanding human population, limited resources, and a shortage of arable land. As a result, developing delivery systems that efficiently distribute micronutrients, pesticides, and antibiotics in crops is crucial to ensuring high productivity and high-quality produce while minimising resource waste. However, current and standard practices for agrochemical application in plants are inefficient. These practices cause significant detrimental environmental side effects, such as water and soil contamination, biodiversity loss and degraded ecosystems; and public health concerns, such as respiratory problems, chemical exposure and food contamination.