Showing 20 articles starting at article 161
< Previous 20 articles Next 20 articles >
Categories: Energy: Batteries, Energy: Technology
Published Researchers take major step toward developing next-generation solar cells



Engineers have discovered a new way to manufacture solar cells using perovskite semiconductors. It could lead to lower-cost, more efficient systems for powering homes, cars, boats and drones.
Published Crawfish could transfer ionic lithium from their environment into food chain



Lithium-ion rechargeable batteries are showing up in ever more devices, and the increasing use of this technology means more lithium is expected to find its way into the environment as a contaminant. In new research, a team has explored how this ion accumulates in a common Southern crustacean, the crawfish, with implications for the environment and public health.
Published Metamaterials and AI converge, igniting innovative breakthroughs



Scientists unveil next-generation research trends in metaphotonics platforms with AI.
Published Brain-inspired wireless system to gather data from salt-sized sensors



In a new study, researchers describe a novel approach for a wireless communication network that can efficiently transmit, receive and decode data from thousands of microelectronic chips that are each no larger than a grain of salt.
Published Fast-charging lithium-sulphur batteries on the horizon



New research shows that the next generation of lithium-sulphur (Li||S) batteries may be capable of being charged in less than five minutes, instead of several hours as is currently the case.
Published Revolutionary method developed for mass-producing polymer solid electrolytes



Scientists have unveiled a groundbreaking technique for mass-producing polymer solid electrolytes, crucial components in batteries.
Published Breakthrough could make automated dosing systems universal



Automated insulin dosing systems combine low-cost blood-glucose monitors with insulin pumps that use precision dosing to continuously regulate blood-sugar and hold it steady. Synthetic biologists have found a way to piggyback on the technology and make it universally applicable for the precision dosing of virtually any drug.
Published Researchers prove fundamental limits of electromagnetic energy absorption



Electrical engineers have determined the theoretical fundamental limit for how much electromagnetic energy a transparent material with a given thickness can absorb. The finding will help engineers optimize devices designed to block certain frequencies of radiation while allowing others to pass through, for applications such as stealth or wireless communications.
Published New study shows analog computing can solve complex equations and use far less energy



A team of engineers has proven that their analog computing device, called a memristor, can complete complex, scientific computing tasks while bypassing the limitations of digital computing.
Published An electricity generator inspired by the drinking bird toy powers electronics with evaporated water



Inspired by the classic drinking bird toy, scientists have developed an engine that efficiently converts energy from water evaporation into electricity to power small electronics. The device produces energy outputs exceeding 100 volts -- much higher than other techniques that generate electricity from water -- and can operate for several days using only 100 milliliters of water as fuel, according to a new study.
Published Scientists use novel technique to create new energy-efficient microelectronic device



Researchers have created a new material that uses 'redox gating' to control the movement of electrons in and out of a semiconducting material.
Published Batteries for airborne electric vehicles that take off and land vertically



Researchers are taking cleaner transportation to the skies by creating and evaluating new batteries for airborne electric vehicles that take off and land vertically. Researchers are developing new energy-dense materials, learning how these materials degrade under extreme conditions, and developing battery control systems.
Published Spiral wrappers switch nanotubes from conductors to semiconductors and back



By wrapping a carbon nanotube with a ribbon-like polymer, researchers were able to create nanotubes that conduct electricity when struck with low-energy light that our eyes cannot see. In the future, the approach could make it possible to optimize semiconductors for applications ranging from night vision to new forms of computing.
Published Giving particle detectors a boost



Researchers have tested the performance of a new device that boosts particle signals.
Published Tiny wireless light bulbs for biomedical applications



The combination of OLEDs and acoustic antennas creates a light source that could be used for minimally invasive treatment methods.
Published Nanodevices can produce energy from evaporating tap or seawater



Researchers have discovered that nanoscale devices harnessing the hydroelectric effect can harvest electricity from the evaporation of fluids with higher ion concentrations than purified water, revealing a vast untapped energy potential.
Published Healable cathode could unlock potential of solid-state lithium-sulfur batteries



Engineers developed a cathode material for lithium-sulfur (Li-S) batteries that is healable and highly conductive, overcoming longstanding challenges of traditional sulfur cathodes. The advance holds promise for bringing more energy dense and low-cost Li-S batteries closer to market.
Published Scientists put forth a smarter way to protect a smarter grid



Scientists have put forth a new approach to protect the electric grid, creating a tool that sorts and prioritizes cyber threats on the fly.
Published Unlocking the potential of lithium-ion batteries with advanced binders



Lithium-ion batteries employ binders that encounter challenges such as poor conductivity and expansion during charging. In a recent study, scientists have developed a high-performing binder using poly(vinylphosphonic acid) for silicon oxide-based anodes in lithium-ion batteries. This binder offers enhanced performance as demonstrated by the superior durability, and discharging capacity of the anodes compared to conventional options. With patents filed internationally, this technology holds promise for broader applications in electric vehicles and beyond.
Published Lithium-ion batteries from drones might find second lives in less 'stressful' devices



Taking flight can be stressful -- especially for a lithium-ion battery that powers a drone. Too much strain on these cells causes damage and shortens a device's overall lifespan. Research shows the potential to improve batteries in aerial electric vehicles that take off and land vertically. The team developed a new electrolyte to address these challenges and said the 'stressed out' batteries could also have second lives in less strenuous applications.