Showing 20 articles starting at article 561
< Previous 20 articles Next 20 articles >
Categories: Energy: Technology, Offbeat: Space
Published 'Starquakes' could explain mystery signals



Fast radio bursts, or FRBs, are an astronomical mystery, with their exact cause and origins still unconfirmed. These intense bursts of radio energy are invisible to the human eye, but show up brightly on radio telescopes. Previous studies have noted broad similarities between the energy distribution of repeat FRBs, and that of earthquakes and solar flares. However, new research has looked at the time and energy of FRBs and found distinct differences between FRBs and solar flares, but several notable similarities between FRBs and earthquakes. This supports the theory that FRBs are caused by 'starquakes' on the surface of neutron stars. This discovery could help us better understand earthquakes, the behavior of high-density matter and aspects of nuclear physics.
Published Magnetoelectric material can reconnect severed nerves



Neuroengineers designed the first self-rectifying magnetoelectric material and showed it can not only precisely stimulate neurons remotely but also reconnect a broken sciatic nerve in a rat model.
Published Wireless, battery-free electronic 'stickers' gauge forces between touching objects



Engineers developed electronic 'stickers' that measure the force exerted by one object upon another. The force stickers are wireless, run without batteries and fit in tight spaces, making them versatile for a wide range of applications, from surgical robots to smart implants and inventory tracking.
Published Modular dam design could accelerate the adoption of renewable energy



Scientists have developed a new modular steel buttress dam system designed to resolve energy storage issues hindering the integration of renewable resources into the energy mix. The new modular steel buttress dam system facilitates the rapid construction of paired reservoir systems for grid-scale energy storage and generation using closed-loop pumped storage hydropower, cutting dam construction costs by one-third and reducing construction schedules by half.
Published Scientists discover the highest energy gamma-rays ever from a pulsar



Scientists have detected the highest energy gamma rays ever from a dead star called a pulsar. The energy of these gamma rays clocked in at 20 tera-electronvolts, or about ten trillion times the energy of visible light. This observation is hard to reconcile with the theory of the production of such pulsed gamma rays, as the international team reports.
Published Plot thickens in hunt for ninth planet



A pair of theoretical physicists are reporting that the same observations inspiring the hunt for a ninth planet might instead be evidence within the solar system of a modified law of gravity originally developed to understand the rotation of galaxies.
Published Comfort with a smaller carbon footprint



Researchers have developed a data-driven AI algorithm for controlling the heating and cooling of an office building. The system does not require ambient sensors or specific knowledge of the building's rooms. During heating operations, the system was able to achieve energy savings of up to 30%, which can represent significant reductions to cost and environmental impact.
Published Insect cyborgs: Towards precision movement



Insect cyborgs may sound like something straight out of the movies, but hybrid insect computer robots, as they are scientifically called, could pioneer a new future for robotics. It involves using electrical stimuli to control an insect’s movement. Now, an international research group has conducted a study on the relationship between electrical stimulation in stick insects' leg muscles and the resulting torque (the twisting force that causes the leg to move).
Published Large mound structures on Kuiper belt object Arrokoth may have common origin



A new study posits that the large, approximately 5-kilometer-long mounds that dominate the appearance of the larger lobe of the pristine Kuiper Belt object Arrokoth are similar enough to suggest a common origin. The study suggests that these “building blocks” could guide further work on planetesimal formational models.
Published Study quantifies satellite brightness, challenges ground-based astronomy



The ability to have access to the Internet or use a mobile phone anywhere in the world is taken more and more for granted, but the brightness of Internet and telecommunications satellites that enable global communications networks could pose problems for ground-based astronomy. Scientists confirm that recently deployed satellites are as bright as stars seen by the unaided eye.
Published Bursts of star formation explain mysterious brightness at cosmic dawn



In the James Webb Space Telescope’s (JWST) first images of the universe’s earliest galaxies, the young galaxies appear too bright, too massive and too mature to have formed so soon after the Big Bang. Using new simulations, a team of astrophysicists now has discovered that these galaxies likely are not so massive after all. Although a galaxy’s brightness is typically determined by its mass, the new findings suggest that less massive galaxies can glow just as brightly from irregular, brilliant bursts of star formation.
Published Disaster-proofing sustainable neighborhoods requires thorough long-term planning



Engineers and scientists look at how thoughtful design can reduce a sustainably-designed neighborhood’s energy vulnerability during power disruptions, as well as which design characteristics are needed if and when local populations need to move to shelters. Researchers analyzed the design and energy characteristics of particular kinds of buildings and neighborhoods to assess their vulnerabilities and their access to alternative and renewable energy sources. The authors use several scenarios involving different lengths of power disruption to see which kind of response is most beneficial to the populations affected.
Published Metal-loving microbes could replace chemical processing of rare earths



Scientists have characterized the genome of a metal-loving bacteria with an affinity for rare earth elements. The research paves the way towards replacing the harsh chemical processing of these elements with a benign practice called biosorption.
Published Researchers dynamically tune friction in graphene



The friction on a graphene surface can be dynamically tuned using external electric fields, according to researchers.
Published Capturing CO2 with electricity: A microbial enzyme inspires electrochemistry



Humanity continuously emits greenhouse gases and thereby worsens global warming. Increasing research efforts go into developing strategies to convert these gases, such as carbon dioxide (CO2), into valuable products. CO2 accumulates dramatically over the years and is chemically very stable, thus challenging to transform. Yet, for billions of years, some microbes have actively captured CO2 using highly efficient enzymes. Scientists have now isolated one of these enzymes. When the enzyme was electronically branched on an electrode, they observed the conversion of CO2 to formate with perfect efficiency. This phenomenon will inspire new CO2-fixation systems because of its remarkable directionality and rates.
Published A new twist on rechargeable battery performance



Rechargeable battery performance could be improved by a new understanding of how they work at the molecular level. Researchers upend what's known about how rechargeable batteries function.
Published Down goes antimatter! Gravity's effect on matter's elusive twin is revealed


For the first time, in a unique laboratory experiment at CERN, researchers have observed individual atoms of antihydrogen fall under the effects of gravity. In confirming antimatter and regular matter are gravitationally attracted, the finding rules out gravitational repulsion as the reason why antimatter is largely missing from the observable universe.
Published Milestone for novel atomic clock



An international research team has taken a decisive step toward a new generation of atomic clocks. The researchers have created a much more precise pulse generator based on the element scandium, which enables an accuracy of one second in 300 billion years -- that is about a thousand times more precise than the current standard atomic clock based on caesium.
Published New insights into the atmosphere and star of an exoplanet


A new study of the intriguing TRAPPIST-1 exoplanetary system has demonstrated the complex interaction between the activity of the system's star and its planetary features.
Published Hidden supermassive black holes reveal their secrets through radio signals


Astronomers have found a striking link between the amount of dust surrounding a supermassive black hole and the strength of the radio emission produced in extremely bright galaxies.